• Title/Summary/Keyword: Recirculation region

Search Result 225, Processing Time 0.026 seconds

Analysis of Three Dimensional Liquid Ramjet Engine with Spray and Combustion (액체 램제트 엔진의 3차원 분무 및 연소 반응 해석)

  • 오대환;임상규;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • Liquid ramjet combustor is closely connected with complex phenomena due to a series of processes such as intake air, spray, mixing, and combustion. The present numerical experiments were peformed to investigate these flow characteristics for two and three dimensional liquid ramjet combustor. Grid system was made with three domains: intake region where air is supplied and fuel is injected, combustor and nozzle region, and exit atmosphere region. The numerical results showed that two and three dimensional flow patterns in recirculation region of combustor were significantly different each other and spray model was necessary to predict correctly the chemical reaction flow characteristics. Numerically examined for two different location of fuel injector, one is located on the bottom position of curved intake and the other is located on the top position. We found that bottom position of fuel injector is better than top position because fuel influx to the recirculation region which is need to sustain chemical reaction is more than the latter.

  • PDF

NOx Formation and Emission Characteristics of Premixed Swirl Flame of Natural Gas (천연가스 선회 예혼합 화염의 NOx 생성 및 배출 특성)

  • You, Hyun-Seok;Lee, Joong-Seong;Han, Jeong-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.788-794
    • /
    • 1999
  • The swirl flame is mostly used to stabilize the flame on the burner nozzle in the industrial combustor. In the case of the weak swirl flame(S<0.4), the recirculation zone could not be formed, but in the strong swirl(S>0.6) flame, it could be formed in the center of the swirl flame. In this study, the measurement and analysis of emission species, temperature, radicals of premixed swirl flame in the combustor were performed to understand the NO formation and emission characteristics of the swirl flame of natural gas. The result of NO emission in the swirl flame is that the amount of NO emission in the strong swirl flame decreased about 60% compared with that of the weak swirl flame. The main region of NO formation of the weak swirl flame is positioned in the down stream(z=100~200mm) of the flame, but that of the strong swirl flame is positioned in the up stream(z=40mm) where the recirculation zone seems to be formed. It is supposed that the increase of flame surface and the formation of inversed flame cause the reduction of the high temperature region on the production of NO in the strong swirl flame. The result of NO-temperature relation revealed that the factor of NO formation is not only temperature but also another parameters in the weak swirl flame, but in the strong swirl flame, NO is proportional to the temperature of higher than 1200K.

A Study on Flame Dynamics and Combustion Instability Stabilized with a V-gutter Type Flameholder in a model ramjet combustor (V-gutter 형 보염기를 장착한 모델 램제트 연소기의 화염 특성 및 연소 불안정 연구)

  • Song, Jin-Kwan;Hwang, Jeong-Jae;Song, Jae-Cheon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.447-448
    • /
    • 2008
  • The goal of this study is to find flame dynamic behavior using a transverse fuel injection in a model combustor, and is to investigate main causes of unstable combustion in a liquid-fueled combustor. For transverse fuel injection into air cross flow, spray result shows similar tendency with Wu et al.[1998] until spray arrives at flame-holder. However, passing through flame-holder, fuel inflow into recirculation region of flameholder is not sufficient so it makes large difference between shear flame and recirculation flame behind flameholder. In combustion tests, the stable flame shows a kind of shear flames and low peaks of dynamic pressure frequencies. On the other hand, unstable flame shows periodic detached flame in recirculation zone and a strong peak of dynamic pressure frequency. The instability frequency is highly affected by influx air velocity, air temperature, equivalence ratio and wake or vortex shedding frequency behind the flameholder.

  • PDF

On the Visualization of Three-Dimensional Vortical Structures in the Wake behind a Road Vehicle by PIV Measurements (PIV 측정을 통한 자동차 후류 3차원 와구조의 정량적 해석)

  • Lee Sukjong;Sung Jaeyong;Kim Jinseok;Kim Sungcho;Kim Jeongsoo;Choi Jongwook
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.58-63
    • /
    • 2005
  • Three-dimensional vortical structures in the wake behind a road vehicle has been visualized with the help of two-dimensional PIV measurement data. A three-dimensional velocity field has been reconstructed from several sectional measurement data in the x-y, y-z and z-x planes. Isovorticity surface observed by stacking only the sectional data in each plane, does not show the vortical structures within the recirculation region but represents only the strong shear flows. Thus, in the present study, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, a $\lambda_{2}$-definition which captures the local pressure minimum or vortex core, is applied to visualize the vortices in the recirculation region. The final results represent a successful configuration for the three-dimensional vortices.

  • PDF

Direct Numerical Simulation of the Lock-on Phenomena in the Wake behind a Circular Cylinder in a Perturbed Flow at Re=360 (Re=360에서 교란유동장에 놓인 원형실린더 후류의 유동공진 현상에 대한 직접수치해석)

  • Park, Ji-Yong;Kim, Soo-Hyeon;Bae, Joong-Hun;Park, No-Ma;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.780-789
    • /
    • 2007
  • Lock-on phenomenon in the wake of a circular cylinder is investigated at the Reynolds number of 360 using direct numerical simulation (DNS). To induce lock-on, a streamwise velocity perturbation with a frequency of twice the natural shedding frequency is superimposed on the free stream velocity. The Reynolds stress distributions are investigated to analyze the streamwise force balance acting on the recirculation region and the results are compared with the previous experimental result. When the lock-on occurs, the pressure force on the recirculation region is shown to increase mainly due to the reversal of the Reynolds shear stress distribution, which is consistent with our previous results using PIV measurement. It is also shown that, with the lock-on, the strength of the primary vortices increases whereas that of the secondary vortices decreases significantly. Further, under the lock-on condition the wavelength of the secondary vortices increases by as much as 2.5 times.

Combustion and Performance Efficiency of Boron Carbide Fuel in Solid Fuel Ramjet (고체 램제트 추진기관에서 보론 카바이드 연료의 연소, 성능 특성)

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2004
  • An experimental investigation was conducted to investigate the effects of the equivalence ratio and air mass flux on the combustion efficiency in a solid fuel ramjet used fuel grains which were highly loaded with boron carbide. Combustion efficiency increased with increasing equivalence ratio (grain length), and decreasing air mass flux. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron particles those burn in a diffusion controlled regime. Short grains which considered primarily of the recirculation region produced larger particles and lower combustion efficiencies. The result of the normalized combustion efficiency increased with inlet air temperatures coincident with the result of the Brayton cycle thermal and the total efficiency relating to the heat input.

Study of Injector Damage on Fuel-rich Gas Generator (연료 과농 가스발생기의 분사기 손상에 관한 연구)

  • Moon Il-Yoon;Lee Kwang-Jin;Lim Byoung-Jik;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.197-201
    • /
    • 2006
  • In the development process of a fuel-rich gas generator using kerosene and LOx for a 30 tonf class liquid rocket engine, a heat damage occurred at the LOx post of swirl coaxial injectors used in the gas generator and the problem has been examined. To prevent the heat damage, injectors are redesigned to have an increased recess while maintaining internal mixing, which minimizes recirculation region to prevent anchoring of the flame in the recirculation region. The combustion test results of the sub-scale gas generator showed that this scheme can prevent heat damage of the LOx post in the swirl coaxial injectors of the fuel-rich gas generator.

  • PDF

Analysis on High Concentration Air Pollution Cases in Gimhae Region Using the WRF Numerical Model (중규모 수치모델을 이용한 김해지역 고농도 대기오염 사례 분석)

  • Jung, Woo-Sik;Lee, Bo-Ram;Park, Jong-Kil;Do, Woo-Gon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1029-1041
    • /
    • 2013
  • In this study, eight episode days of high-concentration $PM_{10}$ occurrences in the Gimhae region between 2006 and 2011 were analyzed. Most of them appeared in winter and the highest concentration was observed around 12 LST. Furthermore, the wind direction, wind velocity, and temperature elements were compared with observed values to verify the WRF numerical simulation results used in this study, and they simulated well in accordance with the trend of the observed values. The wind was generally weak in the high-concentration episode days that were chosen through surface weather chart and the numerical simulation results for wind field, and the air pollutants were congested due to the effects of the resulting local winds, thereby causing a high concentration of air pollutants. Furthermore, the HYSPLIT model was performed with the WRF numerical simulation results as input data. As a result, they originated from China and flowed into Gimhae in all eight days, and the lowest concentration appeared on the days when recirculation occurred.

Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor (수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석)

  • Song, Ji-Han;Hwang, Oh-Sik;Park, Tae Choon;Lim, Byung-Jun;Yang, Soo-Seok;Kang, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.