• Title/Summary/Keyword: Recirculation ratio

Search Result 284, Processing Time 0.024 seconds

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

Effect of Recirculated Exhaust Gas on Exhaust Emissions of Boiler with FGR System (FGR 시스템 보일러의 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Kim, Jung-Min;Kim, Yi-Suk;Cho, Yong-Soo;Choi, Seung-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.390-395
    • /
    • 2003
  • The effect of recirculated exhaust gas on exhaust emissions under four kinds of nozzle tip with the different fuel consumption rate are experimentally investigated by using an once-through boiler with FGR system. The purpose of this study is to develop the FGR control system for reducing NOx in a boiler. Intake and exhaust oxygen concentrations, and equivalence ratio are applied to discuss the effect of FGR rate on exhaust emissions at various fuel consumption rates. It is found that NOx emissions are decreased, while soot emissions are increased owing to the drop of intake and exhaust oxygen concentrations, and the rise of equivalence ratio as FGR rates are elevated.

  • PDF

A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines (디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

A Study on Wake Flow Characteristics of vertical Plate with Various Coner Shape (모서리 형상에 따른 수직벽 후류특성에 관한 연구)

  • Lee, Cheol-Jae;Cho, Dae-Hwan
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2011
  • In this study, the velocity distribution according to upper side coner shape of underwater construction with rectangular cylinder was measured with PIV method and the wake flow characteristics was considered. According to the coner shape, the flow pattern of wake flow was also differed greatly and the step-shaped coner of cut-off ratio B/H=0.06 was similar in the slope shape in result.

Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements (자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정)

  • Kim, Jin-Seok;Sung, Jae-Yong;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

Study on Emission Characteristics in a Hydrogen-fueled Engine (수소기관에서의 배기가스에 관한 연구)

  • Cho, U.L.;Ghoi, G.H.;Bae, S.C.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • The goal of this research is to understand the NOx emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 % basis on heating value of the total input fuel. The effects of intake air temperature and exhaust gas recirculation(EGR) on NOx emission were studied. The intake air temperatures were varied from $23^{\circ}C$ to $0^{\circ}C$ by using liquid nitrogen. Also, the exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: ( i ) nitrogen concentrations in the intake pipe were increased by 30% and cylinder gas temperature was decreased by 24% as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$; ( ii ) NOx emission per unit heating value of supplied fuel was decreased by 45% with same decrease of intake air temperature; and (iii) NOx emission was decreased by 77% with 30% of EGR ratio. Therefore, it may be concluded that EGR is effective method to lower NOx emission in hydrogen fueled engine.

A Novel on Optimal Growth Management System of Corp using Recirculation of Nutrient Solution based on IoT and Location Tracking Technology (IoT 및 위치 추적 기술 기반의 양액 순환 방식을 활용한 작물의 최적 생장 관리 시스템에 관한 연구)

  • Jung, Se Hoon;Park, Sung Kyun;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.11
    • /
    • pp.1891-1899
    • /
    • 2016
  • Recently food problem and crop disaster have been increased continuously because of the meteorological changes. These cause rising cost for crops continuously and irregularly. Some researchers have studied straight structure of device for hydroponics and plant factory previously to solve a fundamental part of these problems. However, there are several problems such as limited crop cultivation space, providing irregular nutrients for crops, and lack of monitoring interfaces. For them, we propose an optimal growth and development crops management system using light source tracking and recirculation of nutrient solution method to supply nutrient continuously based on IoT. In order to evaluate the performance of our system, we compared and analyzed in terms of two viewpoints, the tracking analysis for natural light source measurement and the growth of crops through artificial light, LED, respectively. We confirmed that the higher the duty ratio of LED, the larger the crop's size, particularly. As well as, for about 1 month, we compared with the existing natural light growing environment and that of our system. It was confirmed that the size of the crops grown through our system is about three times larger than that of natural light natural crops.

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

Flame Stability and NOx Formation by Micro scale Turbulence (마이크로 스케일 난류에 의한 화염안정성 및 NOx 생성)

  • Kim, I.S.;Seo, J.M.;Lee, G.S.;Lee, C.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.57-62
    • /
    • 2001
  • The effect of micro scale turbulence on flame structure and stability were experimentally investigated by changing the area of micro turbulence generator(MTG) and air velocity in terms of low NOx and high efficiency combustion. NOx and CO concentration were also measured for different MTG areas to investigate whether a vane swirler having MTG has a possibility of using as part for low NOx combustor. From the obtained results, it is shown that flame stability region increases and flame size becomes small as MTG area increases since MTG in itself makes small scale recirculation flow and swirler does large scale recirculation one. It is also shown that low NOx concentration(about 20${\sim}$30ppm@$O_2$ 11%) is achieved for all MTG areas without any increase in CO concentration regardless of air velocity range tested in this study when the equivalence ratio is 0.7. The results obtained in this study can give basic guideline for the design of compact low NOx high efficiency combustor using a vane swirler having MTG.

  • PDF