• Title/Summary/Keyword: Reciprocating sliding

Search Result 71, Processing Time 0.023 seconds

Behavior of Reciprocating Dry Sliding Wear of Plastics Against Steel (플라스틱재료의 왕복동 마찰마멸거동)

  • 김충현;안효석;정태형
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Friction and wear tests have been performed on nylon, acetal resin, and PTFE (polytetrafluoroethylene), in reciprocating dry sliding conditions against steel discs. According to the results, acetal resin showed the lowest wear rates and PTFE exhibited the lowest friction coefficient. The prominent wear mechanisms found were adhesion and abrasion.

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.

Reciprocating sliding wear of nylon and polyacetal against steel (나일론과 폴리아세탈의 마찰마멸특성에 관한 고찰)

  • 김충현;안효석;정태형
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.203-208
    • /
    • 1999
  • Friction and wear test have been performed on nylon, polyacetal, and PTFE(polytetrafluoroethylene), in reciprocating dry sliding conditions against a steel disc. According to the results, polyacetal show lowest wear rates and PTFE was found to exhibit lowest friction coefficient. The prominent wear mechanism found were adhesion and abrasion.

  • PDF

Reciprocating Sliding Wear of Nylon and Polyacetal Against Steel (나일론과 폴리아세탈의 왕복동 마찰마멸특성에 관한 고찰)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.786-793
    • /
    • 2000
  • Nylon, Polyacetal and PTFE were studied to gain a better understanding of their tribological behavior. Wear tests were conducted with reciprocating motion under dry sliding conditions. Friction coefficient and specific wear rate were measured as a function of sliding distance. The worn surfaces were examined with a Scanning Electron Microscope(SEM). Polyacetal showed lowest specific wear rates and PTFE exhibited lowest friction coefficient. The dominant wear mechanism found were adhesion and abrasion.

Reciprocating sliding wear behavior of plastics against steel (플라스틱재료의 왕복동마찰마멸거동)

  • 김충현;안효석;정태형
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.35-41
    • /
    • 1999
  • Friction and wear test was performed for nylon, acetal resin, and PTFE(polytetrafluoroethylene) under reciprocating dry sliding conditions against a steel counterpart. Friction coefficient and specific wear rate were analysed as a function of sliding distance and applied load. The worn surfaces of plate and disc specimens were observed using SEM(Scanning Electron Microscopy). The experimental results show that acetal resin exhibited lowest wear rates whereas PTFE possessed lowest friction coefficient. The prominent wear mechanisms found were adhesion and abrasion.

  • PDF

Experimental Study under Reciprocating Sliding on the Friction Noise (왕복운동에서의 마찰소음 실험적 연구)

  • Choi, Hoil;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.640-644
    • /
    • 2013
  • The present study provides the characteristics of friction noise under reciprocating sliding. The friction contact is generated between the aluminum plate and plastic, which results in friction noise. The experimental results reveal that the friction noise under reciprocating sliding can be produced as the friction coefficient increases. It is also shown that the vibration modes of the pin with dominant deflection in the sliding direction is participated on the friction noise.

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.