• Title/Summary/Keyword: Reciprocating flow

Search Result 112, Processing Time 0.021 seconds

Flow Analysis and Measurement of Pressure Distribution along Inclinde Circular Valve Reeds and Valve Seat Geometric Parameters of Reciprocating Compressor (왕복동형 압축기의 경사진 원판형 밸브리드와 밸브 시트의 기하학적 파라미터에 대한 압력분포 측정 및 유동해석)

  • Park, Jong-Ho;Yoon, Jong;Kim, Tae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.828-833
    • /
    • 2003
  • This work analyzes the effects of the independent variation of different geometric dimensions of compressor valves on the effective flow and force areas using a circular valve plate, such as different geometry of the valve seat, and the valve reed is opened and closed by pressure pulsation, the flow characteristic of the refrigerant passing the valve is very important. In the present study, a circular disk with inclination is assumed to be the valve reed of a reciprocating compressor and numerical analysis of three dimensional velocity fields are performed for theradial flow through the valve model. The effective flow and force area which are required to predict the efficiency of the valve are required to predict the efficiency of the valve are measured and compared with the numerical analysis in this research.

  • PDF

Numerical Analysis on the $2^{nd}$ Discharae-passase In Reciprocating Compressor (왕복동식 수소압축기의 2단 토출통로 유동해석)

  • Lee, G.H.;Rahman, M. Sq.;Kim, C.P.;Joung, T.W.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.27-32
    • /
    • 2009
  • Numerical analysis information of a complex discharge-passage will be very useful to improve hydrogen compression system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas from cylinder going to the chamber of a reciprocating compressor are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the hydrogen compressing system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement should be done. Consequently, development of the better hydrogen compressing system will be achieved.

  • PDF

Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor (왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung;Park, Jaeseong;Kim, Haeseung;Lee, Hyojae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

Numerical Analysis Unsteady Flow Characteristics of the Wells Turbine (웰즈터빈의 비정상유동특성에 관한 수치해석)

  • 김태훈;박일규;이연원
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.69-74
    • /
    • 2001
  • The Wells turbine has hysteresis characteristics in a reciprocating flow. In this paper, in order to understand unsteady flow characteristics of the Wells turbine, a sinusoidal flow condition is simulated. The flow conditions and hysteresis characteristics, including blade thickness, are investigated over a period of time. The pressure distributions along the blade surface are investigated at mid-span to clarify the cause of the hysteresis. The result has shown that the hysteresis characteristics become more pronounced as blade thickness becomes larger. The occurrence of these characteristics depends on the varying behavior of wakes between an accelerating flow and a develerating flow.

  • PDF

Valve Dynamics and Ggas Pressure Pulsation of a Reciprocating Compressor (왕복동식 압축기의 밸브거동 및 압력맥동에 대한 해석적 연구)

  • 이성욱;홍성철;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.130-135
    • /
    • 1998
  • The Reciprocating compressor are widely used in the refrigeration field for its simplicity in principle and high efficiency. In this work, we developed a mathematical model of a reciprocating compressor. The suction and discharge valves are modeled by the spring-mass-damper systems. The working fluid flow is derived from unsteady Bernoulli's equation. With the design parameters, the valve motions and pressure fluctuations are studied numerically and experimentally.

  • PDF

Effects of Gas Pulsation in Piping Lines on Compressor Performance in a Double-Acting Reciprocating Compressor (복동식 왕복동 압축기의 연결 배관계 가스 맥동이 압축기 성능에 미치는 영향)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.448-456
    • /
    • 2000
  • For piping line systems associated with a double-acting reciprocating compressor, an analytical study has been made on the gas pulsation in piping lines and its effects on the compressor performance. The transfer matrix which relates mass flow rate to the gas pulsation downstream of the compressor valve can be obtained by an acoustic model for piping line systems which include snubber and after-cooler with the aid of four pole theory Since mass flow rate is affected by the pressure pulsation in the pressure plenum, while the latter being determined by the former, iteration in the calculation should be made for convergence. The gas pulsation in pipings is found to have an adverse effect on the compressor's performance, and the magnitude of the gas pulsation can be lowered by increasing snubber volume.

  • PDF

Hexagonal reciprocating pump: advantages and weaknesses

  • Stanko, Milan;Golan, Michael
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.121-136
    • /
    • 2013
  • This paper reports the 1-D fluid transient simulation results of the discharge flow conditions in a 6-cylinder reciprocating slurry pump. Two discharge manifold configurations are studied comparatively; a case with a hexagon shaped discharge manifold where each cylinder discharges at a single vertex, and a case where all the cylinders discharges are lumped together into a tank shaped manifold. In addition, the study examines the effect of two pulsation mitigation measures in the case of hexagonal manifold; a single inline orifice in one of the hexagon sides and a volumetric dampener at the manifold outlet. The study establishes the pressure and flow fluctuation characteristics of each configuration and decouples the pulsation characteristics of the pump and the discharge manifold.

Gas pulsation analysis of large reciprocating compressor in parallel operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Cheol;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.910-915
    • /
    • 2009
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.

  • PDF

A Study on the Development of Industrial Dryer using the Superadiabatic Combustion Phenomena (초단열 연소현상을 이용한 산업용 건조기 개발에 관한 연구)

  • Chae, J.O.;Hwang, J.W.;Han, J.H.;Hwang, H.J.;Jun, J.K.;Han, J.O.;Lee, J.S.;You, H.S.;Lee, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.168-174
    • /
    • 2000
  • This paper illustrates the validity of reciprocating type superadiabatic combustor as a industrial applicable dryer. After the investigations of inner and surface temperature distributions of combustor various with air-fuel(methane) ratio, mixture flow rate and reciprocating time, this combustor can be applied in industrial dryer at certain operating conditions. The results are as follows. 1) Higher equilivalence ratio emits more radiation heat flux at the censer chamber 2) Higher mixture flow rate makes more uniform temperature distribution. however, due to the heat transfer from censer chamber to porous media, the radiation beat flux is worse. 3) Longer reciprocating time emit more radiation heat flux. however, this case also makes temperature distribution wide

  • PDF

Gas Pulsation Analysis of Large Reciprocating Compressors in Parallel Operation (병렬 운전되는 대형 왕복동 압축기의 가스맥동 분석)

  • Kim, Seong-Jun;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.