• Title/Summary/Keyword: Reciprocating

Search Result 588, Processing Time 0.028 seconds

Drop/Impact Simulation and Experimental Verification of a Reciprocating Compressor Body (왕복동형 압축기의 낙하충격 시뮬레이션 및 실험적 검증)

  • Kim, Tae-Jong;Kim, Moon-Saeng;Koo, Ja-Ham
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.484-490
    • /
    • 2007
  • A reciprocating compressor used in domestic refrigerators can be subjected to many different forms of shock. These shocks are usually experienced during transporting the products from a manufacturer to customers. The hermetic structure of this kind of compressor makes it difficult to conduct drop tests for identifying the failure mechanism and their drop behaviors. The drop/impact simulation for a reciprocating compressor has been carried out with the explicit code LS-DYNA and its validation has been experimentally verified. Simulation results are in good agreement with those of drop test. The present method of drop/impact simulation provides an efficient and powerful solution to improve the design quality and reduce the design period.

Design and Extraction of Control Parameters of a Moving-Coil-Type Linear Actuator for Driving of Linear Reciprocating Motion Control Systems (리니어 왕복운동 제어시스템 구동용 가동코일형 리니어 액츄에이터의 설계제작 및 제어정수 도출)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Park, Hui-Chang;Mun, Seok-Jun;Park, Chan-Il;Jeong, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.241-248
    • /
    • 1999
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loudspeakers to stirling engine driven linear reciprocating alternators, compressors, textile machines etc. The stroke-length may go up to 2m, and the maximum speed is in the range of 5 to 10m/s with oscillating frequency as high as 15 kHz. Therefore, the linear oscillating actuators(LOAs) may be considered as variable speed drivers of precise controller with stoke-length and reversal periods during the reciprocating motion. In this paper, the design, fabrication, experiments, and extraction of control parameters of a moving coil type LOA for driving of linear reciprocating motion control systems, are treated. The actuator consists of the NdFeB permanent magnets with high specific energy as the stator produced magnetic field, a coil-wrapped nonmagnetic hollow rectangular bobbin structure, and an iron core as a pathway for magnetic flux. Actually, the design is accomplished by using FEM analysis for the basic configuration of a magnetic circuit, and characteristic equations for coil design. In order to apply as the drivers of a linear motion reciprocating control system, the control parameters and circuit parameters, such as input voltage-stoke, exciting frequency-stoke, coil inductance and so on, are extracted from the analysis and experiments on concerning a fabricating LOA.

  • PDF

Dynamic Analysis of a Reciprocating Compression Mechanism Considering Hydrodynamic Forces

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-853
    • /
    • 2003
  • In this paper, a dynamic analysis of the reciprocating compression mechanism of a small refrigeration compressor is performed. In the problem formulation of the mechanism dynamics, the viscous frictional force between the piston and the cylinder wall is considered in order to determine the coupled dynamic behaviors of the piston and the crankshaft. Simultaneous solutions are obtained for the equations of motion of the reciprocating mechanism and the time-dependent Reynolds equations for the lubricating film between the piston and the cylinder wall and for the oil films on the journal bearings. The hydrodynamic forces of the journal bearings are calculated by using a finite bearing model along with the Gumbel boundary condition. A Newton-Raphson procedure is employed in solving the nonlinear equations for the piston and crankshaft. The developed computer program can be used to calculate the complete trajectories of the piston and the crankshaft as functions of the crank angle under compressor-running conditions. The results explored the effects of the radial clearance of the piston, oil viscosity, and mass and mass moment of inertia of the piston and connecting rod on the stability of the compression mechanism.

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF

Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network (웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, D.S.;Yang, B.S.;An, B.H.;Tan, A.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing (스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

Development of a sdms (Self-diagnostic monitoring system) with prognostics for a reciprocating pump system

  • Kim, Wooshik;Lim, Chanwoo;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1188-1200
    • /
    • 2020
  • In this paper, we consider a SDMS (Self-Diagnostic Monitoring System) for a reciprocating pump for the purpose of not only diagnosis but also prognosis. We have replaced a multi class estimator that selects only the most probable one with a multi label estimator such that we are able to see the state of each of the components. We have introduced a measure called certainty so that we are able to represent the symptom and its state. We have built a flow loop for a reciprocating pump system and presented some results. With these changes, we are not only able to detect both the dominant symptom as well as others but also to monitor how the degree of severity of each component changes. About the dominant ones, we found that the overall recognition rate of our algorithm is about 99.7% which is slightly better than that of the former SDMS. Also, we are able to see the trend and to make a base to find prognostics to estimate the remaining useful life. With this we hope that we have gone one step closer to the final goal of prognosis of SDMS.

Effect of Snubber-Array on Variation of Pressure Characteristics in Reciprocating Hydrogen Compression

  • Chung, Han-Shik;Rahman, M. Sq.;Lee, Gyeong-Hwan;Jin, Zhenhua;Kim, Jeong-Hyeon;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1034-1043
    • /
    • 2009
  • Hydrogen energy is becoming popular day by day due to its renewability and pollutaaant free natures. Hydrogen gas pressure which is after passing through reciprocating compressor part has high pulsation wave form. A unit, snubber is used as compressor components to reduce the harmful pulsation waveform and to remove the impurities in the hydrogen gas. An experiment has been conducted to investigate the pulsation reduction performance of different arrangement of snubber i.e. snubber array used in reciprocating compression system. Analyzing the snubber array experimental data, it is found that the pressure fluctuations are reduced from 90.1977% ~ 92.6336% with pressure loss 1.5013% ~ 4.9034% for compressor operation at different speed which ensure the good performance of snubber-array as pulsation damper in hydrogen compressing system.

A Study on Oil Path Design in the Journal Bearing of a Reciprocating Compressor (왕복동식 압축기의 저널 베어링 오일 패스 설계를 위한 연구)

  • Cho, Ihn Sung;Jung, Jae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2013
  • Because the performance of a reciprocating compressor in refrigeration and air-conditioning systems is influenced by the lubrication characteristics of sliding components, the lubrication characteristics between the crankshaft and journal bearing have to be researched for the design and the performance improvement of reciprocating compressors. Thus, the proper supply of lubricant for a lubrication between the crankshaft and journal bearing is essential, and an oil path for lubricant supply is installed in the shaft or bearing. However, in order to guarantee the lubrication performance of the journal bearing, it is necessary to design the position of the oil path. Therefore, it is studied to find the optimum position of the oil path by the analysis of the pressure distribution in the journal bearing. The results show that the position of the oil path is significantly influenced by the pressure distribution of the oil film in the journal bearing.

Noise Reduction of Reciprocating Type Air Compressors (왕복동식 공기압축기의 소음저감에 관한 공학적 대책 연구)

  • Lee, Kwang-Gil;Park, Jae-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.12-16
    • /
    • 2006
  • This paper deals with the noise evaluation and noise reduction of a reciprocating air-compressor. The reciprocating air-compressor is widely used in the small and medium sized industrial firms, many employees exposed and irritated by their noise in the workplace. Thus, appropriate noise control actions should be taken to prevent hearing loss due to the its noise exposure. Lead-wrapping techniques are employed to identify the contribution of principal noise sources which are generally known to be motor, belts, suction valves, discharge valves, moving parts, and flow-induced noise caused by edges or discontinuities along the flow path including expansions, contractions, junctions and bends. As a result, the main noise sources of the air-compressor are categorized by the suction and discharge noise, valve noise, and compressed air tank noise. Based on the investigations, mufflers are designed to reduce both the suction and discharge noise and the compressed-air tank noise. Instead of the conventional valve plate, polyethylene resin is used the reduction of valve impact noise. In addition, attempts are made to reduce the valve noise propagation to the cylinder head and the compressor tank by using the insulation casings. As a result of the countermeasure plans, a noise reduction up to 10dB(A) could be achieved for the air-compressor.