• 제목/요약/키워드: Rechargeable lithium batteries

검색결과 141건 처리시간 0.026초

리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성 (Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries)

  • 김성근;홍성완;한경식;이홍기;심중표
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.

리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극 (Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery)

  • 정혜란;신헌철
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

An Overview of Chemically/Surface Modified Cubic Spinel LiMn2O4 Electrode for Rechargeable Lithium Batteries

  • Jung, Kyu-Nam;Pyun, Su-Il
    • 전기화학회지
    • /
    • 제9권4호
    • /
    • pp.158-169
    • /
    • 2006
  • The present article is concerned with the overview of the chemically/surface modified cubic spinel $LiMn_2O_4$ as a cathode electrode far lithium ion secondary batteries. Firstly, this article presented a comprehensive survey of the cubic spinel structure and its correlated electrochemical behaviour of $LiMn_2O_4$. Subsequently, the various kinds of the chemically/surface modified $LiMn_2O_4$ and their electrochemical characteristics were discussed in detail. Finally, this article reviewed our recent research works published on the mechanism of lithium transport through the chemically/surface modified $Li_{1-\delta}Mn_2O_4$ electrode from the kinetic view point by the analyses of the experimental potentiostatic current transients and ac-impedance spectra.

Lithium/Sulfur Secondary Batteries: A Review

  • Zhao, Xiaohui;Cheruvally, Gouri;Kim, Changhyeon;Cho, Kwon-Koo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.97-114
    • /
    • 2016
  • Lithium batteries based on elemental sulfur as the cathode-active material capture great attraction due to the high theoretical capacity, easy availability, low cost and non-toxicity of sulfur. Although lithium/sulfur (Li/S) primary cells were known much earlier, the interest in developing Li/S secondary batteries that can deliver high energy and high power was actively pursued since early 1990’s. A lot of technical challenges including the low conductivity of sulfur, dissolution of sulfur-reduction products in the electrolyte leading to their migration away from the cathode, and deposition of solid reaction products on cathode matrix had to be tackled to realize a high and stable performance from rechargeable Li/S cells. This article presents briefly an overview of the studies pertaining to the different aspects of Li/S batteries including those that deal with the sulfur electrode, electrolytes, lithium anode and configuration of the batteries.

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • 강용묵
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

New Solid Polymer Electrolyte for Lithium Secondary Batteries

  • Park, Jung-Ki;Lee, Yong-Min;Lee, Jun-Young;Ryou, Myeong-Hyeon
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.67-68
    • /
    • 2006
  • Solid polymer electrolyte is very important in the applications to high energy density lithium batteries of high safety. In this work, solid polymer electrolytes based on PE non-woven matrix, hybrid salt, and anion receptor were successfully prepared. They could provide high ion conduction phase with maintaining mechanical strength. They also showed high electrochemical stability and lithium ion transference number. This new type of solid polymer electrolyte is expected to be a good candidate for rechargeable solid state lithium secondary batteries.

  • PDF