• Title/Summary/Keyword: Rechargeable batteries

Search Result 202, Processing Time 0.023 seconds

Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries (리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성)

  • Kim, Sung-Keun;Hong, Sung-Wan;Han, Kyeong-Sik;Lee, Hong-Ki;Shim, Joong-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.

Nanostructured Electrode Materials for Rechargeable Lithium-Ion Batteries

  • Zhao, Wei;Choi, Woosung;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.195-219
    • /
    • 2020
  • Today, rechargeable lithium-ion batteries are an essential portion of modern daily life. As a promising alternative to traditional energy storage systems, they possess various advantages. This review attempts to provide the reader with an indepth understanding of the working mechanisms, current technological progress, and scientific challenges for a wide variety of lithium-ion battery (LIB) electrode nanomaterials. Electrochemical thermodynamics and kinetics are the two main perspectives underlying our introduction, which aims to provide an informative foundation for the rational design of electrode materials. Moreover, both anode and cathode materials are clarified into several types, using some specific examples to demonstrate both their advantages and shortcomings, and some improvements are suggested as well. In addition, we summarize some recent research progress in the rational design and synthesis of nanostructured anode and cathode materials, together with their corresponding electrochemical performances. Based on all these discussions, potential directions for further development of LIBs are summarized and presented.

Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries

  • Nguyen, Cao Cuong;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-112
    • /
    • 2013
  • Lithium diffusivity of the silicon (Si)-based materials of Si-Cu and $SiO_x$ (x = 0.4, 0.85) with improved interfacial stability to electrolyte have been determined, using variable rate cyclic voltammetry with film model electrodes. Lithium diffusivity is found to depend on the intrinsic properties of anode material and electrolyte; the fraction of oxygen for $SiO_x$ (x = 0.4, 0.85), which is directly related to electrical conductivity, and the electrolyte type with different ionic conductivity and viscosity, carbonate-based liquid electrolyte or ionic liquid-based electrolyte, affect the lithium diffusivity.

Recent Research Trend in Ultra-thick Electrodes for Rechargeable Batteries (이차 전지용 후막 전극 연구 동향)

  • Lee, Jung Tae
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.1
    • /
    • pp.18-29
    • /
    • 2020
  • 배터리 구동 기기의 사용이 계속적으로 증가하고 첨단화, 다기능화, 융합화가 되면서 고에너지 밀도 배터리에 대한 수요는 지속적으로 증가하고 있다. 배터리의 에너지 밀도를 높이는 여러 가지 전략 중에서 활물질 코팅 두께를 늘려 에너지를 저장하지 않는 집전체와 분리막의 사용량을 줄이고 배터리의 중량, 부피, 그리고 가격을 동시에 줄이는 전략은 간단하면서도 매우 효율적인 방법이다. 하지만 기존 전극 제작 방법으로 후막 전극을 제작할 경우 전극 제작 자체가 쉽지 않고 만들었다고 해도 전자와 이온의 두께 방향 이동 지연으로 인해 전극의 전기화학 특성이 좋지 않다. 이러한 문제점을 극복하고자 이차 전지용 첨단 후막 전극에 대한 연구가 활발하게 진행되고 있다. 본 기고문에서는 이차 전지용 후막 전극의 구조, 제조방법, 전기화학 특성에 관한 연구동향을 소개하고자 한다.

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

Size-controlled Chevrel Mo6S8 as Cathode Material for Mg Rechargeable Battery

  • Ryu, Anna;Park, Min-Sik;Cho, Woosuk;Kim, Jeom-Soo;Kim, Young-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3033-3038
    • /
    • 2013
  • Nanoscale Chevrel $Mo_6S_8$ powders are synthesized by molten salt synthesis. Synthesized $Mo_6S_8$ powders have different mean particle sizes which are dependent on a ratio of salt to precursor. The particle sizes of $Mo_6S_8$ powders changes along with the ratio increase. $Mo_6S_8$ (6:1) demonstrates the best electrochemical characteristics among the synthesized $Mo_6S_8$ powders although the $Mo_6S_8$ (4:1) has the smallest particle size. $Mo_6S_8$ (6:1) shows a reversible capacity of 83.9 $mAhg^{-1}$, which is 27.5% and 33% improved value over $Mo_6S_8$ (2:1) and $Mo_6S_8$ (4:1) at a current density of 0.2C, respectively. The superior electrochemical properties of $Mo_6S_8$ (6:1) are attributed to the balanced particle size which provides proper contact area with electrolyte and the shortened $Mg^{2+}$ diffusion length. The $Mo_6S_8$ (4:1) has the smallest particle size but further reduction of particle size from $Mo_6S_8$ (6:1) is not advantageous.