• Title/Summary/Keyword: Rechargeable Batteries

Search Result 199, Processing Time 0.021 seconds

Applications and Challenges of Lithium-Sulfur Electrochemical Batteries

  • Mohammed Jasim M. Al Essa
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This paper presents applications of lithium-sulfur (Li-S) energy storage batteries, while showing merits and demerits of several techniques to mitigate their electrochemical challenges. Unmanned aerial vehicles, electric cars, and grid-scale energy storage systems represent main applications of Li-S batteries due to their low cost, high specific capacity, and light weight. However, polysulfide shuttle effects, low conductivities, and low coulombic efficiencies signify key challenges of Li-S batteries, causing high volumetric changes, dendritic growths, and limited cycling performances. Solid-state electrolytes, interfacial interlayers, and electrocatalysts denote promising methods to mitigate such challenges. Moreover, nanomaterials have capability to improve kinetic reactions of Li-S batteries based on several properties of nanoparticles to immobilize sulfur in cathodes, stabilizing lithium in anodes while controlling volumetric growths. Li-S energy storage technologies are able to satisfy requirements of future markets for advanced rechargeable batteries with high-power densities and low costs, considering environmentally friendly systems based on renewable energy sources.

The Stable Rechargeability of Secondary Zn-Air Batteries: Is It Possible to Recharge a Zn-Air Battery?

  • Lee, Sang-Heon;Jeong, Yong-Joo;Lim, Si-Hyoun;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The rechargeable Zn-air battery is considered as one of the potential candidates for the next generation secondary batteries due to its many advantages. However, its further applications and commercialization have been limited by the complexity of the reactions on air electrode which are oxygen reduction and evolution reactions (ORR/OER) upon discharging and charging processes, respectively. In the present study, lanthanum was impregnated into a commercial Pt/C gas diffusion electrode, and it clearly verified significantly enhanced cycling stability and reversibility. The results presented in this study show the possibility of repeated charge/discharge processes for Zn-air batteries with a La-loaded air electrode, and they demonstrate the potential as a promising next generation secondary battery.

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Diagnosis of State Of Health(SOH) for Battery Management System(BMS) (축전지 관리시스템(BMS)을 위한 건강상태(SOH) 진단방법)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.558-562
    • /
    • 2006
  • Although secondary batteries, called rechargeable batteries, are very important energy elements in modern society, their application is hindered by the typical nonlinear and irreversible characteristics. Precise monitoring of the state of health(SOH) for each battery cell on line is crucial for stable operation and proper management of them. This paper proposes diagnostic method of the SOH for a battery cell on line without interruption on its operation nor bad effect on its life. This paper practically diagnoses on 120 industrial batteries and provides some guide lines to decide whether to exchange or not.

Improved Cycling Ability of Si-SiO2-graphite Composite Battery Anode by Interfacial Stabilization (계면안정화를 통한 Si-SiO2-흑연 복합재 음극의 전기화학적 특성 개선)

  • Min, Jeong-Hye;Bae, Young-San;Kim, Sung-Su;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.154-159
    • /
    • 2012
  • Structural volume change occurring on the Si-based anode battery materials during alloying/dealloying with lithium is noticed to be a major drawback responsible for a limited cycle life. Silicon monoxide has been reported to show relatively improved cycling performance compared to Si-containing materials for rechargeable lithium batteries, due to the structural buffering role of in-situ formed $Li_2O$ and lithium silicate during the reaction of silicon monoxide and lithium. Here we report improved cycling ability of interfacially stabilized Si-$SiO_2$-graphite composite anode using silane-based electrolyte additive for rechargeable lithium batteries, which includes low cost silicon dioxide for structural stabilization and graphite for enhanced conductivity.

Research Trend of Electrolyte Materials for Lithium Rechargeable Batteries (리튬 2차전지용 전해질 소재의 개발 동향)

  • Lee, Young-Gi;Kim, Kwang-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.242-255
    • /
    • 2008
  • In lithium-ion batteries(LIB), the development of electrolytes had mainly focused on the characteristics of lithium cobalt oxide($LiCoO_2$) cathode and graphite anode materials since the commercialization in 1991. Various studies on compatibility between electrode and electrolytes had been actively developed on their interface. Since then, as they try to adopt silicon and tin as anode materials and three components(Ni, Mn, Co), spinel, olivine as cathode materials for advanced lithium batteries, conventional electrolyte materials are facing a lot of challenges. In particular, requirements for electrolytes performance become harsh and complicated as safety problems are seriously emphasized. In this report, we summarized the research trend of electrolyte materials for the electrode materials of lithium rechargeable batteries.

Improving the Efficiency for Hybrid Battery Combining Super Capacitor (슈퍼 커패시터를 결합한 하이브리드 전지의 효율 개선)

  • Jee, Seung-Hyun;Kim, Soo-Ho;Kim, Ju-Sun;Yoon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.410-414
    • /
    • 2007
  • To prevent degradation of battery efficiency generated by serious current variation in rechargeable batteries, we researched a hybrid battery combining a super capacitor and a rechargeable battery. The hybrid battery shows high efficiency in a lifetime and a voltage drop. The hybrid battery was composed of a rechargeable battery, a current regulator and a super capacitor that can be used with supporting power. Before the experiment, the hybrid battery was simulated for current regulation and an electric current in a super capacitor by using the Pspice program. After that, we compared the efficiency of the hybrid battery with the efficiency of the normal battery. In this result, we demonstrated that the hybrid battery has a higher efficiency and a longer lifespan than the normal battery.

Al-Cu Electrode Laser Welding for Rechargeable Battery (이차전지 전극용 Al-Cu의 레이저 용접)

  • Hwang, Seung Jun;Kim, Tae Wan;Jeon, Wook Sang;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, as electric vehicles and hybrid vehicles are widely used, the use of rechargeable batteries is increasing. Electric and hybrid cars are made up of hundreds to thousands of electric cells depending on the car model. And the assembly process of the cells and modules requires a variety of bonding process. Meanwhile, in order to connect several cells in series, Cu used as a cathode and Al of an anode must be bonded. In this paper, the characteristics of Al and Cu metals, laser types, characteristics and principles of welding lasers for welding of Cu and Al electrodes are introduced.