• Title/Summary/Keyword: Rechargeable Batteries

Search Result 199, Processing Time 0.026 seconds

Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment (해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계)

  • Kim, Hyeong-Jun;Lee, Kyung-Chang;Son, Ho-Jun;Park, Shin-Jun;Park, Cheol-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.

PLR (Plastic Lithium Rechargeable) Batteries using Nanoscale Materials : A Convenient Source of Electrical Energy for the Future?$\dag$

  • G. Campet;N. Treuil;A. Poquet;S. J. Hwang;C. Labrugere;A. Deshayes;J. C. Frison;J. Portier;J. M. Reau;J. H. Choy
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.885-892
    • /
    • 1999
  • This communication describes the synthesis of : (i) non-toxic and low cost nanocrystalline electrode materials, which can be prepared advantageously at low temperature ; (ii) highly conductive electrolyte membranes formed by the nano-encapsulation within a poly(acrylonitrile)-based polymer matrix of a solution of LiPF6 in organic solvants. The performances of rechargeable PLR (Plastic Lithium Rechargeable) batteries using the above mentioned components are presented.

Design of a Rechargeable Battery Wireless Charging System

  • Kim, Dae-Hyun;Yeo, Tae-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.210-213
    • /
    • 2016
  • This paper presents a wireless power charging system for rechargeable batteries. Recently, misalignment between transmitting coil and receiving coils has been a significant factor to wireless power charging systems, which are prone to lateral and angular misalignment. Unfortunately, the batteries can be easily rolled because of the shape, and coils are often misaligned while charging devices, in practical situations. This paper presents the wireless power battery charging system. In order to solve the angular misalignment, two perpendicular coil having structure of 'plus (+)' shape was proposed. To validate the results, the proposed wireless power charging system was implemented at 6.78 MHz using loosely coupled resonant coils, and the system was verified as being robust to misalignment.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Design methodology of the rechargeable battery protection IC for low-power implementation (2차 전지 보호회로의 저전력 설계 기법)

  • 이종훈;김상민;김상호;김대정;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.169-172
    • /
    • 2002
  • A protection integrated circuit which enables the stable operation of the rechargeable battery should be designed with a low-power architecture because it consumes the power of the battery. This paper proposed a low-power scheme especially when the several series-connected batteries are provided. By adopting a time sharing control of the batteries, the chip size and power consumption could be reduced.

  • PDF

Electrochemistry of Conductive Polymers 46. Polymer Films as Overcharge Inhibitors for Lithium-Ion Rechargeable Batteries

  • Choi, Shin-Jung;Park, Su-Moon
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Conducting polymer films grown from various aromatic compounds have been evaluated as overcharge protecting additives for lithium ion rechargeable batteries. The polymer films were grown electrochemically under the conditions similar to those encountered during the overcharging processes of lithium batteries and subsequently characterized by potentiodynamic, electrochemical quartz crystal microbalance, electrochemical impedance spectroscopic, and scanning electron microscopic experiments. Results indicate that bicyclic and polycyclic aromatic hydrocarbons would be poor candidates for inhibitors, while biphenyl, terphenyl, and benzene derivatives displayed excellent performances. Mixed polymer films grown from o-terphenyl and p-xylene show the best performance among the candidates.

Preparation of Electrolytic Tungsten Oxide Thin Films as the Anode in Rechargeable Lithium Battery (리튬 이차전지용 텅스텐 산화물 전해 도금 박막 제조)

  • Lee, Jun-Woo;Choi, Woo-Sung;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.680-686
    • /
    • 2013
  • Tungsten oxide films were prepared by an electrochemical deposition method for use as the anode in rechargeable lithium batteries. Continuous potentiostatic deposition of the film led to numerous cracks of the deposits while pulsed deposition significantly suppressed crack generation and film delamination. In particular, a crack-free dense tungsten oxide film with a thickness of ca. 210 nm was successfully created by pulsed deposition. The thickness of tungsten oxide was linearly proportional to deposition time. Compositional and structural analyses revealed that the as-prepared deposit was amorphous tungsten oxide and the heat treatment transformed it into crystalline triclinic tungsten oxide. Both the as-prepared and heat-treated samples reacted reversibly with lithium as the anode for rechargeable lithium batteries. Typical peaks for the conversion processes of tungsten oxides were observed in cyclic voltammograms, and the reversibility of the heat-treated sample exceeded that of the as-prepared one. Consistently, the cycling stability of the heat-treated sample proved to be much better than that of the as-prepared one in a galvanostatic charge/discharge experiment. These results demonstrate the feasibility of using electrolytic tungsten oxide films as the anode in rechargeable lithium batteries. However, further works are still needed to make a dense film with higher thickness and improved cycling stability for its practical use.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.