• Title/Summary/Keyword: Receptors, opioid

Search Result 100, Processing Time 0.022 seconds

Perioperative stress prolong post-surgical pain via miR-339-5p targeting oprm1 in the amygdala

  • Zhu, Yi;Sun, Mei;Liu, Peng;Shao, Weidong;Xiong, Ming;Xu, Bo
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.423-432
    • /
    • 2022
  • Background: The decreased expression of mu-opioid receptors (MOR) in the amygdala may be a key molecular in chronic post-surgical pain (CPSP). It is known that miR-339-5p expression in the amygdala of a stressed rat model was increased. Analyzed by RNAhybrid, miR-339-5p could target opioid receptor mu 1 (oprm1) which codes MOR directly. So, the authors hypothesized that miR-339-5p could regulate the expression of MOR via targeting oprm1 and cause the effects to CPSP. Methods: To simulate perioperative short-term stress, a perioperative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception rat model was built. A pmiR-RB-REPORTTM dual luciferase assay was taken to verify whether miR-339-5p could act on oprm1 as a target. The serum glucocorticoid level of rats was test. Differential expressions of MOR, GFAP, and pERK1/2 in each group of the rats' amygdala were tested, and the expressions of miR-339-5p in each group of rats' amygdalas were also measured. Results: Perioperative stress prolonged the recovery time of incision pain. The expression of MOR was down-regulated in the amygdala of rats in stress + incision (S + IN) group significantly compared with other groups (P < 0.050). miR-339-5p was up-regulated in the amygdala of rats in group S + IN significantly compared with other groups (P < 0.050). miR-339-5p acts on oprm1 3'UTR and take MOR mRNA as a target. Conclusions: Perioperative stress could increase the expression of miR-339-5p, and miR-339-5p could cause the expression of MOR to decrease via targeting oprm1. This regulatory pathway maybe an important molecular mechanism of CPSP.

Activation of spinal Serotonergic Receptor Contributes to Electroacupuncture Analgesia in Rat with Chronic Pain (만성통증이 유발된 흰쥐에서 관찰된 침진통효과의 세로토닌성 기전)

  • Park Dong-Suk;Shin Hong-Kee;Lee Kyung-Hee
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.239-248
    • /
    • 2005
  • Objectives : Electroacupuncture (EA)-induced analgesia has been known to be mediated through the activation of opioid, noradrenergic and serotonergic receptors. However, little study on serotonergic mechanism has been performed in an animal model of chronic pain. The present study was designed to elucidate the type of serotonergic receptors responsible for EA analgesia in the chronic pain model. Methods : In rats with complete Freund's: adjuvant-induced inflammation and spinal nerve injury, spinal wide dynamic range (WDR) cell responses to graded electrical stimulation of afferent C fiber were recorded before and after spinal application of selective 5-hydroxytryptamine (5-HT) receptor antagonists. EA stimulation (2Hz, 0.5msec, 3mA) was applied to the contralateral Zusanli point for 30 min. Results : In both models of chronic pain, WDR cell responses were greatly inhibited after EA stimulation. EA-induced inhibition of WDR celt responses was significantly attenuated by spinal application of non-selective 5-HT receptor antagonist, dihydroergocristine Of 5-HT receptor antagonists tested, 5-HT1A (WAY 100635) and 5-HT2 (LY53857) receptor antagonists strongly reduced an ability of EA stimulation to inhibit WDR cell responses. However, 5-HT1B (GR55562) and 5-HT3 (LY278584) receptor antagonists also had weak but significant blocking action on EA-induced inhibitory effect on chronic pain. Conclusions : Dorsal hem cell responses, afferent C fiber stimulation, chronic pain, electroacupuncture, serotonergic receptors.

  • PDF

Structure-Activity Relationships of 13- and 14-Membered Cyclic Partial Retro-Inverso Pentapeptides Related to Enkephalin

  • Hong, Nam-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.874-880
    • /
    • 2010
  • A series of 13- and 14-membered cyclic enkephalin analogs based on the moderately $\mu$ selective prototype compound Tyr-C[D-$A_2bu$-Gly-Phe-Leu] 8a were synthesized to investigate the structure-activity relationship. The modifications of sequence were mainly focused on two positions 3 and 5, critical for the selective recognition for $\mu$ and $\delta$ opioid receptors. The substitution of hydrophobic $Leu^5$ with hydrophilic $Asp^5$ derivatives led to Tyr-C[D-$A_2bu$-Gly-Phe-Asp(N-Me)] 7 and Tyr-C[D-Glu-Phe-gPhe-rAsp(O-Me)] 5, the peptides with a large affinity losses at both $\mu$ and $\delta$ receptors. The substitution of $Phe^3$ with $Gly^3$ led to Tyr-C[D-Glu-Gly-gPhe-rLeu] 3 and Tyr-C[D-Glu-Gly-gPhe-D-rLeu] 4, the peptides with large affinity losses at $\mu$ receptors, indicating the critical role of phenyl ring of $Phe^3$ for $\mu$ receptor affinities. One atom reduction of the ring size from 14-membered analogs Tyr-C[D-Glu-Phe-gPhe-(L and D)-rLeu] 6a, 6b to 13-membered analogs Tyr-C[D-Asp-Phe-gPhe-(L and D)-rLeu] 1, 2 reduced the affinity at both $\mu$ and $\delta$ receptors, but increased the potency in the nociceptive assay, indicating the ring constrain is attributed to high nociceptive potency of the analogs. For the influence of D- or L-chirality of $Leu^5$ on the receptor selectivity, regardless of chirality and ring size, all cyclic diastereomers displayed marked $\mu$ selectivity with low potencies at the $\delta$ receptor. The retro-inverso analogs display similar or more active at $\mu$ receptor, but less active at $\delta$ receptor than the parent analogs.

Dual Effect of Dynorphin A on Single-Unit Spike Potentials in Rat Trigeminal Nucleus

  • Lee, Keun-Mi;Han, Hee-Seok;Jang, Jae-Hee;Ahn, Doug-Kuk;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.213-221
    • /
    • 2001
  • The amygdala is known as a site for inducing analgesia, but its action on the trigeminal nucleus has not been known well. Little information is available on the effect of dynorphin on NMDA receptor-mediated electrophysiological events in the trigeminal nucleus. The purpose of this study was to investigate the changes in the single neuron spikes at the trigeminal nucleus caused by the amygdala and the action of dynorphin on the trigeminal nucleus. In the present study, extracellular single unit recordings were made in the dorsal horn of the medulla (trigeminal nucleus caudalis) and the effects of microiontophoretically applied compounds were examined. When [D-Ala2, N-Me-Phe4, Glys5-ol]enkephalin (DAMGO, 10-25 mM), a ${\mu}-opioid$ receptor agonist, was infused into the amygdala, the number of NMDA-evoked spikes at the trigeminal nucleus decreased. However, the application of naloxone into the trigeminal nucleus while DAMGO being infused into the amygdala increased the number of spikes. Low dose (1 mM) of dynorphin in the trigeminal nucleus produced a significant decrease in NMDA-evoked spikes of the trigeminal nucleus but the NMDA-evoked responses were facilitated by a high dose (5 mM) of dynorphin. After the ${\kappa}$ receptors were blocked with naloxone, dynorphin induced hyperalgesia. After the NMDA receptors were blocked with AP5, dynorphin induced analgesia. In conclusion, dynorphin A exerted dose-dependent dual effects (increased & decreased spike activity) on NMDA-evoked spikes in the trigeminal nucleus. The inhibitory effect of the dynorphin at a low concentration was due to the activation of ${\kappa}$ receptors and the excitatory effect at a high concentration was due to activation of NMDA receptors in the trigeminal neurons.

  • PDF

Carrageenan-Induced Hyperalgesia Is Partially Alleviated by Endomorphin-1 Locally Delivered into Inflamed Paws in Rat

  • Lee, Seo-Eun;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.369-373
    • /
    • 2003
  • This study was performed to test whether endomorphin-1 has analgesic effect, when locally administrated into inflamed peripheral tissue. Carrageenan suspension (0.5%) was injected intraplantarly into the right paw of Sprague-Dawley male rats, and the rats were subjected to a series of mechanical stimuli with von Frei filaments before and after the injection. Carrageenan-injected rats showed typical inflammatory hyperalgesic signs and decrease of withdrawal threshold, peaked at 3 to 6 hours after the injection and lasted more than 3 days. Endomorphin-1 was intraplantarly injected with carrageenan, simultaneously or 3∼4 hours after carrageenan. Simultaneous injection of endomorphin-1 with carrageenan significantly reduced hyperalgesia and thd analgesic effect was prolonged up to 8 hours. The delivery of endomorphin-1 ($50{\mu}g$) into the inflamed area after 3 to 4 hours of carrageenan injection significantly increased the threshold of hyperalgesic mechanical withdrawal response, but only partially. Intrathecal treatment of endomorphin-1 completely reversed carrageenan-induced hyperalgesia. This report is the first to show that peripherally delivered endomorphin-1 relieved inflammatory hyperalgesia. But a control through peripheral ${\mu}-opioid$ receptors appears to be not sufficient for complete pain treatment.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

5-HT1A receptors mediate the analgesic effect of rosavin in a mouse model of oxaliplatin-induced peripheral neuropathic pain

  • Li, Daxian;Park, Sangwon;Lee, Kyungjoon;Jang, Dae Sik;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.489-494
    • /
    • 2021
  • Oxaliplatin, a third-generation platinum derivative, is the mainstay of current antineoplastic medications for advanced colorectal cancer therapy. However, peripheral neuropathic complications, especially cold allodynia, undermine the life-prolonging outcome of this anti-cancer agent. Rosavin, a phenylpropanoid derived originally from Rhodiola rosea, exhibits a wide range of therapeutic properties. The present study explored whether and how rosavin alleviates oxaliplatin-induced cold hypersensitivity in mice. In the acetone drop test, cold allodynia behavior was observed from days 3 to 5 after a single injection of oxaliplatin (6 mg/kg, i.p.). Cold allodynia was significantly attenuated following rosavin treatment (10 mg/kg, i.p.). Specific endogenous 5-HT depletion by three consecutive pretreatments with parachlorophenylalanine (150 mg/kg/day, i.p.) abolished the analgesic action of rosavin; this effect was not observed following pretreatment with naloxone (opioid receptor antagonist, 10 mg/kg, i.p.). Furthermore, 5-HT1A receptor antagonist WAY-100635 (0.16 mg/kg, i.p.), but not 5-HT3 receptor antagonist MDL-72222 (1 mg/kg, i.p.), blocked rosavin-induced analgesia. These results suggest that rosavin may provide a novel approach to alleviate oxaliplatin-induced cold allodynia by recruiting the activity of 5-HT1A receptors.

Effect of Propofol on Ion Channels in Acutely Dissociated Dorsal Raphe Neuron of Sprague-Dawley Rats

  • Lee, Bong-Jae;Kwon, Moo-ll;Shin, Min-Chul;Kim, Youn-Jung;Kim, Chang-Ju;Kim, Soon-Ae;Kim, Ee-Hwa;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.189-197
    • /
    • 2001
  • To investigate propofol's effects on ionic currents induced by ${\gamma}-aminobutyric$ acid (GABA) and glycine as well as on those produced by the nicotinic acetylcholine- and glutamate-responsive channels, rat dorsal raphe neurons were acutely dissociated and the nystatin-perforated patch-clamp technique under voltage-clamp conditions was used to observe their responses to the administration of propofol. Propofol evoked ion currents in a dose-dependent manner, and propofol $(10^{-4}\;M)$ was used to elicit ion currents through the activation of $GABA_A,$ glycine, nicotinic acetylcholine and glutamate receptors. Propofol at a clinically relevant concentration $(10^{-5}\;M)$ potentiated $GABA_A-,$ glycine- and NMDA receptor-mediated currents. The potentiating action of propofol on $GABA_A-,$ glycine- and NMDA receptor-mediated responses involved neither opioid receptors nor G-proteins. Apparently, propofol modulates inhibitory and excitatory neurotransmitter-activated ion channels either by acting directly on the receptors or by potentiating the effects of the neurotransmitters, and this modulation appears to be responsible for the majority of the anaesthetic and/or adverse effects.

  • PDF

Effects of Racemic Ketamine on Excitable Membranes of Frog (개구리 세포막에 대한 Racemic Ketamine의 영향)

  • Lee, Jong-Hwa;Frank, George B.
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 1991
  • The effect of racemic Ketamine HCl was observed on excitable membranes of sciatic nerve fibres and toe muscles from frog. Ketamine significantly depressed the amplitude of the action potential, maximum rate of rise and that of fall of action potentials of sciatic nerve by dose-dependent and time-course manner, and also it produced the inhibition of $K^+-contracture$ in toe muscle. We used two different ways of sucrose gap method to to obtain the better results from sciatic nerve. We observed and compared the effect of ketamine on sciatic nerve with naloxone, 4-AP (4-aminopyridine) and TEA (Tetraethylammonium). Naloxone significantly but not totally blocked the effect of ketamine both on nerve and on skeletal muscle. 4-AP or TEA by itself had a significant depressant effect on the action potentials on nerve by central perfusion (extracellular perfusion), but both of these drugs did not much affect the action of Ketamine on nerve. The reversibility of effect of Ketamine (10 mM) was observed both on nerve and on skeletal muscles when exposed to drug for short duration. The effects of racemic ketamine described may provide to support that one of the mechanisms of the action of Ketamine on nerve and on muscles of frog might be related to non-specifically effect on receptors within the ion channels $(K^+-channel,\;Na^+-channel\;or\;slow\;Ca^{++}\;channel)$ at higher dose which produces anesthetic effect and also it interacts specifically with one of the opioid receptors or subtype of these receptors which is sensitive to Naloxone at lower dose which produces analgesia.

  • PDF

Review about effects of sleep disturbances on Burning mouth syndrome (수면장애가 구강작열감 증후군에 미치는 영향에 대한 고찰)

  • Lim, Hyun-Dae;Lee, You-Mee
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.4
    • /
    • pp.313-318
    • /
    • 2013
  • The aim of this study was to the relationship between sleep disturbances and Burning mouth syndrome(BMS). BMS presents as a chronic burning sensation in the oral mucous membrane that is frequently associated with sleep disturbances. BMS is considered neuropathic pain condition with dysfunction of small diameter afferent sensory fiber. A review of the studies reveals, BMS suggested peripheral and cental nervous system changes. Sleep disruption or Rem sleep deprivation cause an inhibition of opioid protein synthesis and a reduced affinity of ${\mu}$ and ${\delta}$ opioid receptors. Let me say that sleep disturbances suggest a risk factor For BMS and support to evaluate as a part of BMS treatment. Further study will be required to ascertain the relationship between distruption of sleep continuity or Rem sleep deprivation and BMS and the evidence of altered neurochemical degeneration of BMS.