• Title/Summary/Keyword: Receptor model

Search Result 843, Processing Time 0.036 seconds

Studies on Biochemical Mechanism of DNA Alkylating Agents Tethered to Ligands for Retinoic acid Receptor

  • Yun, Byoung-Gu;Pyun, Sung-Jae;Ji, Sang-Mi;Ham, Won-Hoon;Lee, Young-Joo;Park, Hyun-Ju
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.176.2-176.2
    • /
    • 2003
  • Transcription factors (TF) can bind tightly to specific DNA lesions formed by some anticancer agents. The formation these TF:(drug-modified DNA) complex may disrupt expression of genes critical for cell survival, and it was proved to be one of biochemical mechanisms of anticancer activity. Based on this model, we have designed programmable DNA Alkylating agents that can also attract TF, especially nuclear receptors. As a model compound, we designed drug molecules, RA-mustard and Am580-mustard, that enable to bind both retinoic acid receptor (RAR) and DNA by using molecular modeling techniques, and synthesized them by connecting chlorambucil and ligand for RAR with a linker unit. (omitted)

  • PDF

HQSAR Study of Tricyclic Azepine Derivatives as an EGFR (Epidermal Growth Factor Receptor) Inhibitors

  • Chung, Hwan-Won;Lee, Kyu-Whan;Oh, Jung-Soo;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.159-164
    • /
    • 2007
  • Stimulation of epidermal growth factor receptor (EGFR) is essential in signaling pathway of tumor cells. Thus, EGFR has intensely studied as an anticancer target. We developed hologram quantitative structure activity relationship (HQSAR) models for data set which consists of tricyclic azepine derivatives showing inhibitory activities for EGFR. The optimal HQSAR model was generated with fragment size of 6 to 7 while differentiating fragments having different atom and connectivity. The model showed cross-validated $q^2$ value of 0.61 and non-cross-validated $r^2$ value of 0.93. When the model was validated with an external set excluding one outlier, it gave predictive $r^2$ value of 0.43. The contribution maps generated from this model were used to interpret the atomic contribution of each atom to the overall inhibition activity. This can be used to find more efficient EGFR inhibitors.

Estimation of Contribution by Pollutant Source of VOCs in Industrial Complexes of Gwangju Using Receptor Model (PMF) (수용모델(PMF)을 이용한 광주산업단지 VOCs의 오염원별 기여도 추정)

  • Park, Jin-Hwan;Park, Byoung-Hoon;Kim, Seung-Ho;Yang, Yoon-Cheol;Lee, Ki-Won;Bae, Seok-Jin;Song, Hyeong-Myeong
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.219-234
    • /
    • 2021
  • Industrial emissions, mainly from industrial complexes, are important sources of ambient Volatile Organic Compounds (VOCs). Identification of the significant VOC sources from industrial complexes has practical significance for emission reduction. VOC samples were collected from July 2019 to June 2020. A Positive Matrix Factorization (PMF) receptor model was used to evaluate the VOC sources in the area. Four sources were identified by PMF analysis, including coating-1, coating-2, printing, and vehicle exhaust. The coating-1 source was revealed to have the highest contribution (41.5%), followed by coating-2 (23.9%), printing (23.1%), and vehicle exhaust (11.6%). The source showing the highest contribution was coating emissions, originating from the northwest to southwest of the sample site. It also relates to facilities that produce auto parts. The major components of VOC emissions from the coating facilities were toluene, m,p-xylene, ethylbenzene, o-xylene, and butyl acetate. Industrial emissions should be the top priority to meet the relevant control criteria, followed by vehicular emissions. This study provides a strategy for VOC source apportionment from an industrial complex, which is helpful in the development of targeted control strategies.

Antidepressant Effects of Cynanchum wilfordii Hemsley, Phlomis umbrosa Turcz, and Angelica gigas Nakai via Inhibition of 5-HT6 Receptor-mediated cyclic AMP Activity

  • Oh, Kyo-nyeo;Oh, Dool-Ri;Jung, Myung-A;Kim, Yujin;Choi, Eun Jin;Hong, Ji Ae;Kim, Jaeyong;Choi, Chul-yung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.247-254
    • /
    • 2018
  • A This study evaluated the antidepressant effects of the herbal mixture CPAE(Cynanchum wilfordii Hemsley, Phlomis umbrosa Turcz, and Angelica gigas Nakai) using several tests, including a test for serotonin 6($5-HT_6$) receptor activity, the forced swimming test(FST), and tests for corticosterone(CORT) and monoamine levels. CPAE showed antagonistic effects on the $5-HT_6$ receptor in a stable $5-HT_6$ receptor-expressing cell line. We subsequently confirmed the antidepressant effects of CPAE in chronic stress model in mice and explored the underlying mechanisms of its action. Specifically, we observed that CPAE treatment significantly reduced immobility time in the FST and effectively restored abnormal levels of CORT in plasma and of monoamines(serotonin, dopamine, and norepinephrine) in hippocampus and prefrontal cortex. These results suggest that CPAE has significant antidepressant effects.

Study on Peripheral Mechanism and Opioid Receptors Implicated in Electroacupunture-induced Inbibition of Chronic Pain (만성통증을 억제하는 전침효과의 말초성 기전과 아편양물질수용기에 관한 연구)

  • 신홍기;이서은;박동석
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.108-117
    • /
    • 2003
  • Objective : The central opioid mechanism of acupuncture analgesia has been fairly well documented in acute behavioral experiments, but little electrophysiological study has been performed on the peripheral mechanism and subtypes of opioid receptors responsible for acupuncture-induced antinociception in chronic animal models. In the present electrophysiological experiment, we studied the peripheral mechanism and opioid receptor subtypes which Were implicated in electroacupuncture-induced antinociception in the rat with chronic inflammatory and neurogenic pain. Methods : In the rat with complete Freund's adjuvant-induced inflammation and spinal nerve injury, dorsal horn cell responses to afferent C fiber stimulation were recorded before and after electroacupuncture (EA) stimulation applied to the contralateral Zusanli point for 30 minutes. Also studied Were the effects of specific opioid receptor antagonists and naloxone methiodide, which can not cross the blood-brain barrier, on EA-induced inhibitory action. Results : EA-induced inhibitory action was significantly attenuated by naloxone methiodide, suggesting that EA-induced inhibition was mediated through peripheral mechanism. Pretreatment, but not posttreatment of naltrexone and spinal application significantly blocked EA-induced inhibitory actions. In inflammatory and neurogenic pain models, ${\mu}-$ and ${\delta}-opioid$ receptor antagonists (${\beta}-funaltrexamine$ & naltrindole) significantly reduced EA-induced inhibitory action, but ${\kappa}-opioid$ receptor antagonist had weak inhibitory effect on EA-induced antinociception. Conclusion : These results suggest that 2Hz EA-stimulation induced antinoeiceptive action is mediated through peripheral as well as central mechanism, and mainly through ${\mu}-$ and ${\delta}-opioid$ receptors.

  • PDF

The Dopamine D4 Receptor Polymorphism Affects the Canine Fearfulness

  • Lee, Chae-Young;Kim, Chang-Hoon;Shin, Soo-An;Shin, Dae-Sung;Kang, Joo-Hyun;Park, Chan-Kyu
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.77-83
    • /
    • 2008
  • The canine fearfulness is a behavioral trait known to have a genetic basis. This research analyzed genetic effects of the dopamine D4 receptor polymorphism on this behavior by postulating a mixed model of inheritance. Genotyping for the three different repeat polymorphism found in the third exon of the receptor gene was carried out for the population of the Korean native dogs. Four hundred fifty eight dogs with known pedigree were genotyped, and 264 individuals were tested for their fear responses to an experimenter, in which four different behavioral paradigms were adopted. Since the results assessed by principal factor analysis revealed a major factor explaining 69% of the total phenotypic variance, the subsequent analyses were conducted for this quantity. Analyses of the factor scores by estimating their posterior means indicated that there is a fixed effect exerted by the three different repeat polymorphism found in the D4 receptor as well as sex, in addition to unidentified polygenic effects. The phenotypic contribution of the D4 genotype was roughly estimated to be about 2%, which is a fraction of the total genetic effects responsible for more than 20% of the total phenotypic variance.