• Title/Summary/Keyword: Receptor methods

Search Result 1,578, Processing Time 0.03 seconds

Effects of Systemic and Intrathecal AMPA/KA Receptor Antagonist LY293558 in a Rat Model for Postoperative Pain (절개통증모델에서 복강 및 척수강내로 투여된 AMPA/KA 수용체 길항제 LY293558의 효과)

  • Lee, Hae-Jin
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • Background: Intraperitoneal (IP) and intrathecal (IT) administration of $\alpha$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic (AMPA) and kainate (KA) receptor antagonist attenuate hyperalgesia in various models of persistent pain. The purpose of this study was to assess the effects of IP and IT LY293558, a novel AMPA/KA receptor antagonist on mechanical hyperalgesia after incision. Methods: Sprague-Dawley rats were anesthetized with halothane and underwent plantar incision. Two hours later, responses to mechanical stimuli were assessed using the response frequency to a nonpunctate mechanical stimulus and withdrawal threshold to calibrated von Frey filaments. One group of rats received vehicle, 5 or 10 mg/kg of LY293558 IP. In the other group, vehicle, 0.2, 0.5 or 2 nmol of LY293558 was administered IT. Ataxia and motor function were also evaluated. Results: Hyperalgesia was persistent in both the vehicle and 5 mg/kg group. IP administration of 10 mg/kg of LY293558 increased withdrawal threshold at 30 and 60 min after incision; deficits in rotorod performance were observed at 30, 60, 90 and 150 min. IT administration of 0.5 nmol of LY293558 increased the median withdrawal threshold at 30 and 60 min. Motor function was only impaired at 30 min. IT administration of 2 nmol produced hemiparesis. Again, inhibition of pain behaviors outlasted the effects on motor function. Conclusions: These data further suggest AMPA/KA receptors are important for the maintenance of pain behaviors caused by incisions. IT administration of LY293558 was more effective than systemic administration and reducing pain behaviors caused by a surgical incision.

  • PDF

Correlation Between the Expression of Epidermal Growth Factor Receptor and MR Features in Glioma (신경교종에서 표피성장인자수용체의 발현도와 자기공명영상 소견의 상관관계)

  • 김범수;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.125-129
    • /
    • 1997
  • Purpose: The aim of this study was to find correlation between the expression of epidermal growth factor receptor (EGFR) and MR findings in the brain glioma. Materials and Methods: MR features including edema, margin, necrosis, heterogeneity, hemorrhage and contrast enhancement were retrospectively analyzed with preoperative MR images in 41 patients with proven brain gliomas (8 low grade astrocytomas, 12 anaplastic astrocytomas, 21 glioblastoma multiformes). Immunohistochemical study of EGFR was done and their expressions were graded by both stained distribution and intensity. Correlation analysis between the MR features and EGFR expressions was done. Results: Peritumoral edema was correlated with both distribution (r=0.71, p=0.00) and stain intensity (r=0.69, p=0.00) of EGFR expression. Other MR features showed no statistical correlation with EGFR expression. Conclusion: MRI is useful in evaluation of brain glioma, and peritumoral edema is useful finding that suggests EGFR expression as well as malignant histopathologic grade of the tumor.

  • PDF

Determinants of Circulating Soluble Leptin Receptor and Free Leptin Index in Indonesian Pre-Pubertal Obese Male Children: A Preliminary CrossSectional Study

  • Hendarto, Aryono;Nagrani, Dimple G.;Meiliana, Anna;Sastroasmoro, Sudigdo;Sjarif, Damayanti R.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • Purpose: This study aimed to investigate the clinical and metabolic determinants of circulating soluble leptin receptor (CSLR) and free leptin index (FLI) in pre-pubertal obese male children. Methods: We conducted a preliminary cross-sectional study at three tertiary hospitals and one public primary school. Eighty obese male children without growth and developmental abnormalities aged 5-9 years were recruited. In these children, obesity was solely caused by excessive food intake, and not by acute illness, medications, endocrine abnormalities, or any syndrome. Body mass index (BMI), body fat mass, carbohydrate intake, fat intake, high density lipoprotein cholesterol level, low density lipoprotein cholesterol level, triglyceride level, and Homeostatic Model Assessment for Insulin Resistance are the potential determinants for leptin regulation, which is represented by CSLR level and FLI. Results: Carbohydrate was the main source of energy. BMI and body fat mass had negative weak correlation with CSLR and positive weak correlation with FLI. Furthermore, carbohydrate intake was found to be independently associated with CSLR based on the results of the multiple linear regression analysis. Following an increase in carbohydrate intake, CSLR level decreased progressively without any negative peak. Conclusion: Leptin regulation in prepubertal obese male children is associated with body composition and dietary intake. Carbohydrate intake is useful for predicting CSLR. Lipid profiles and insulin resistance are not related to both CSLR and FLI. Treatment and prevention of leptin resistance in obese children should focus on reducing BMI, fat mass, and carbohydrate intake.

The Role of the Peripheral Chemokine, CCL3, in Hyperalgesia following Peripheral Nerve Injury in the Rat (신경손상에 의해 유발된 과민통반응에서 말초 케모카인 CCL3의 역할)

  • Leem, Joong Woo;Lee, Hyun Joo;Nam, Taick Sang;Yoon, Duck Mi
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.187-196
    • /
    • 2008
  • Background: Upregulation of one type of the pro-inflammatory chemokine (CCL2) and its receptor (CCR2) following peripheral nerve injury contributes to the induction of neuropathic pain. Here, we examined whether another type of chemokine (CCL3) is involved in neuropathic pain. Methods: We measured changes in mechanical and thermal sensitivity in the hind paws of naïve rats or rats with an L5 spinal nerve ligation (SNL) after intra-plantar injection of CCL3 or met-RANTES, an antagonist of the CCL3 receptor, CCR1. We also measured CCL3 levels in the sciatic nerve and the hind paw skin as well as CCR1 expression in dorsal root ganglion (DRG) cells from the lumbar spinal segments. Results: Intra-plantar injection of CCL3 into the hind paw of naive rats mimicked L5 SNL-produced hyperalgesia. Intra-plantar injection of met-RANTES into the hind paw of rats with L5 SNL attenuated hyperalgesia. L5 SNL increased CCL3 levels in the sciatic nerve and the hind paw skin on the affected side. The number of CCR1-positive DRG cells in the lumbar segments was not changed following L5 SNL. Conclusions: Partial peripheral nerve injury increases local CCL3 levels along the degenerating axons during Wallerian degeneration. This CCL3 binds to its receptor, CCR1, located on adjacent uninjured afferents, presumably nociceptors, to induce hyperalgesia in the neuropathic pain state.

Activation of peroxisome proliferator-activated receptor gamma induces anti-inflammatory properties in the chicken free avian respiratory macrophages

  • Mutua, Mbuvi P.;Steinaa, Lucilla;Shadrack, Muya M.;Muita, Gicheru M.
    • Journal of Animal Science and Technology
    • /
    • v.57 no.11
    • /
    • pp.40.1-40.7
    • /
    • 2015
  • Background: Activation of peroxisome proliferator activated receptor gamma ($PPAR{\gamma}$) in the alveolar macrophages (AM) by selective synthetic $PPAR{\gamma}$ ligands, improves the ability of the cells to resolve inflammation. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM) and show distinct functional differences from AM. The effects of treating FARM with $PPAR{\gamma}$ ligands are unclear. Methods: FARM were harvested by lavage of chicken respiratory tract and their morphology assessed at microscopic level. The effects of $PPAR{\gamma}$ agonists on the FARM in vitro viability, phagocytic capacity and proinflammatory cytokine (TNF-${\alpha}$) production were assessed. Results: FARM had eccentric nucleus and plasma membrane ruffled with filopodial extensions. Ultrastructurally, numerous vesicular bodies presumed to be lysosomes were present. FARM treated with troglitazone, a selective $PPAR{\gamma}$ agonist, had similar in vitro viability with untreated FARM. However, treated FARM co-cultured with polystyrene particles, internalized more particles with a mean volume density of 41 % compared to that of untreated FARM of 21 %. Further, treated FARM significantly decreased LPS-induced TNF-${\alpha}$ production in a dose dependent manner. Conclusion: Results from this study show that $PPAR{\gamma}$ synthetic ligands enhance phagocytic ability of FARM. Further the ligands attenuate production of proinflammatory cytokines in the FARM, suggesting potential therapeutic application of $PPAR{\gamma}$ ligands in the management of respiratory inflammatory disorders in the poultry industry.

Antinociceptive Effects of Tramadol on the Neuropathic Pain in Rats (쥐의 신경병증성 통증 모델에서 트라마돌의 진통효과)

  • Song, Kyung-Wha;Kim, Hyun-Jeong;Yum, Kwang-Won
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.150-155
    • /
    • 2001
  • Background: Tramadol is known to be a weak opioid. However, it has also been shown that tramadol is an effective norepinephrine and serotonin uptake blocker, which may be effective in the treatment of neuropathic pain. The present study was undertaken in order to assess the antinociceptive action of tramadol and to investigate possible antinociceptive mechanisms by using antagonists in an animal neuropathic pain models in rats. Methods: Rats were prepared with tight ligation at the left 5 and 6th lumbar spinal nerves (Kim and Chung's neuropathic pain model). The antinociceptive effects of tramadol (10, 20, and 50 mg/kg i.p.) in rats with neuropathic pain were assessed. Additionally, following coadministration of antagonists such as naloxone (1 mg/kg i.p.), yohimbine (1 mg/kg i.p.) and ritanserin (1 mg/kg i.p.) with 50 mg/kg of tramadol, the responses to mechanical and thermal stimuli were measured over a two-hour period. Results: Tramadol displayed potent antinociceptive effects in a dose-dependent manner on rats with neuropathic pain (P < 0.05). The effects of tramadol were inhibited by coadministered naloxone and yohimbine in rats with mechanical and thermal allodynia, respectively (P < 0.05). However, there were no significant changes in the pain behaviors in the case of ritanserin. Conclusions: Tramadol showed significant antinociceptive effects in rats with regards to neuropathic pain against both mechanical and thermal allodynia. The antinociceptive effect on the mechanical stimuli is medicated via an opioid receptor. However, it appears that the antinociceptive effects on thermal allodynia are mediated via a noradrenalin receptor vice a serotonergic receptor.

  • PDF

NMDA Receptor Activation Mediates Neuropathic Pain States Induced by Calcium Channel α2δ1 Subunit (신경병증성 통증과정의 NMDA 수용체 활성과 칼슘통로 α2δ1 Subunit의 영향)

  • Yu, Soo Bong;Lim, Young Soo;Kim, Doo Sik
    • The Korean Journal of Pain
    • /
    • v.22 no.3
    • /
    • pp.210-215
    • /
    • 2009
  • Background: Several studies have indicated that a nerve injury enhances the expression of the voltage-gated calcium channel ${\alpha}2{\delta}1$ subunit (Cav ${\alpha}2{\delta}1$) in sensory neurons and the dorsal spinal cord. This study examined whether NMDA receptor activation is essential for Cav ${\alpha}2{\delta}1$-mediated tactile allodynia in Cav ${\alpha}2{\delta}1$ overexpressing transgenic mice and L5/6 spinal nerve ligated rats (SNL). These two models show similar Cav ${\alpha}2{\delta}1$ upregulation and behavioral hypersensitivity, without and with the presence of other injury factors, respectively. Methods: The transgenic (TG) mice were generated as described elsewhere (Feng et al., 2000). The left L5/6 spinal nerves in the Harlan Sprague Dawley rats were ligated tightly (SNL) to induce neuropathic pain, as described by Kim et al. (1992). Memantine 2 mg/kg (10 ul) was injected directly into the L5/6 spinal region followed by $10{\mu}l$ saline. Tactile allodynia was tested for any mechanical hypersensitivity. Results: The tactile allodynia in the SNL rats could be reversed by an intrathecal injection of memantine 2 mg/kg at 1.5 hours. The tactile allodynia in the Cav ${\alpha}2{\delta}1$ over-expressing TG mice could be reversed by an intrathecal injection of memantine 2 mg/kg at 1.5, 2.0 and 2.5 hours. Conclusions: The behavioral hypersensitivity was similar in the TG mice and nerve injury pain model, supporting the hypothesis that elevated Cav ${\alpha}2{\delta}1$ mediates similar pathways that underlie the pain states in both models. The selective activation of spinal NMDA receptors plays a key role in mediating the pain states in both the nerve-injury rats and TG mice.

Role of the insulin-like growth factor system in gonad sexual maturation in Pacific oyster Crassostrea gigas

  • Moon, Ji-Sung;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.3.1-3.8
    • /
    • 2020
  • Background: The IGF system plays important roles in controlling growth, development, reproduction, and aging of organisms. Methods: To estimate maturation of the Pacific oyster Crassostrea gigas, we investigated the expression of insulin-like growth factor (IGF) system components and sex-specific genes. To determine the role of the IGF system in the growth and spawning period of female and male oysters, we examined mRNA expression levels of the C. gigas insulin receptor-related receptor (CIR), IGF binding protein complex acid labile subunit (IGFBP_ALS), and molluscan insulin-related peptide (MIP), as well as those of vitellogenin (Vg) and receptor-type guanylate cyclase (Gyc76C) in gonads of C. gigas collected between April and October, when sex can be determined visually in this species. Results: We found that MIP, IGFBP_ALS, and CIR mRNA expression levels were dependent on sex and month and were greater in males than in females. CIR and Vg mRNA expression levels were very similar among females, whereas IGF system components and Gyc76C were very similarly expressed among males. The highest expression values were observed in May, when oysters are mature; CIR and Vg mRNA expression levels were highest in females, and those of MIP, IGFBP_ALS, CIR, and Gyc76C were highest in males. Interestingly, we observed a 1:1 proportion of females to males during this period. Conclusion: Our results suggest that IGF system components, as well as Vg and Gyc76C, are associated with sexual maturation in C. gigas.

Association of Toll-Like Receptor 5 Gene Polymorphism with Susceptibility to Ossification of the Posterior Longitudinal Ligament of the Spine in Korean Population

  • Chung, Won-Suk;Nam, Dong-Hyun;Jo, Dae-Jean;Lee, Jun-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • Objective: Ossification of the posterior longitudinal ligament (OPLL) has a strong genetic component. Specific gene polymorphisms may be associated with OPLL in several genes which regulate calcification in chondrocytes, change of extracellular collagen matrix and secretions of many growth factors and cytokines controlling bone morphogenesis. Toll-like receptor 5 (TLR5) may playa role in the pathogenesis of OPLL by intermediate nuclear factor-kappa B (NF-${\kappa}B$). The current study focused on coding single nucleotide polymorphisms (SNPs) of TLR5 for a case-control study investigating the relationship between TLR5 and OPLL in a Korean population. Methods: A total of 166 patients with OPLL and 231 controls were recruited for a case-control association study investigating the relationship between SNPs of TLR5 gene and OPLL. Four SNPs were genotyped by direct sequencing (rs5744168, rs5744169, rs2072493, and rs5744174). SNP data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Multiple logistic regression analysis with adjustment for age and gender was performed to calculate an odds ratio (OR). Results: None of SNPs were associated with OPLL in three alternative models (codominant, dominant, and recessive models; p> 0.05). A strong linkage disequilibrium block, including all 4 SNPs, was constructed using the Gabriel method. No haplotype was significantly associated with OPLL in three alternative models. Conclusion: These results suggest that Toll-like receptor 5 gene may not be associated with ossification of the posterior longitudinal ligament risk in Korean population.

Lesion of Subthalamic Nucleus in Parkinsonian Rats : Effects of Dopamine $D_1$ and $D_2$ Receptor Agonists on the Neuronal Activities of the Substantia Nigra Pars Reticulata

  • Park, Yong-Sook;Jeon, Mi-Fa;Lee, Bae-Hwan;Chang, Jin-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.6
    • /
    • pp.455-461
    • /
    • 2007
  • Objective : It was hypothesized that dopamine agonist administration and subthalamic nucleus (STN) lesion in the rat might have a synergistic effect on the neuronal activities of substantia nigra pars reticulata (SNpr) as observed in patients with Parkinson's disease. The effects of SKF38393 (a $D_1$ receptor agonist) and Quinpirole (a $D_2$ receptor agonist) were compared in parkinsonian rat models with 6- hydroxydopamine (6-OHDA) after STN lesion. Methods : SKF38393 and Quinpirole were consecutively injected intrastriatally. SNpr was microrecorded to ascertain the activity of the basal ganglia output structure. The effect of SKF38393 or Quinpirole injection on the firing rate and firing patterns of SNpr was investigated in medial forebrain bundle (MFB) lesioned rats and in MFB+STN lesioned rats. Results : The administration of SKF38393 decreased SNpr neuronal firing rates and the percentage of burst neurons in the MFB lesioned rats, but did not alter them in MFB+STN lesioned rats. The administration of Quinpirole significantly decreased the spontaneous firing rate in the MFB lesioned rats. However, after an additional STN lesion, it increased the percentage of burst neurons. Conclusion : This study demonstrated that dopamine agonists and STN lesion decreased the hyperactive firing rate and the percentage of burst neurons of SNpr neurons in 6-OHDA lesioned rats, respectively. Quinpirole with STN lesion increased a percentage of burst neurons. To clear the exact interactive mechanism of $D_1$ and $D_2$ agonist and the corresponding location, it should be followed a study using a nonselective dopamine agonist and $D_1$, $D_2$ selective antagonist.