• 제목/요약/키워드: Recentering capability

검색결과 8건 처리시간 0.02초

초탄성 형상기억합금 능동제어 가새시스템을 이용한 중심가새프레임 구조물의 지진거동 및 복원성능 평가 (Seismic Behavior and Recentering Capability Evaluation of Concentrically Braced Frame Structures using Superelastic Shape Alloy Active Control Bracing System)

  • 허종완;이두재;조양희
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.1-12
    • /
    • 2012
  • The researches related to active control systems utilizing superelastic shape memory alloys (SMA) have been recently conducted to reduce critical damage due to lateral deformation after severe earthquakes. Although Superelastic SMAs undergo considerable inelastic deformation, they can return to original conditions without heat treatment only after stress removal. We can expect the mitigation of residual deformation owing to inherent recentering characteristics when these smart materials are installed at the part where large deformation is likely to occur. Therefore, the primary purpose of this research is to develop concentrically braced frames (CBFs) with superelastic SMA bracing systems and to evaluate the seismic performance of such frame structures. In order to investigate the inter-story drift response of CBF structures, 3- and 6-story buildings were design according to current design specifications, and then nonlinear time-history analyses were performed on numerical 2D frame models. Based on the numerical analysis results, it can be comparatively verified that the CBFs with superelastic SMA bracing systems have more structural advantages in terms of energy dissipation and recentering behavior than those with conventional steel bracing systems.

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

Seismic response of steel braced frames equipped with shape memory alloy-based hybrid devices

  • Salari, Neda;Asgarian, Behrouz
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1031-1049
    • /
    • 2015
  • This paper highlights the role of innovative vibration control system based on two promising properties in a parallel configuration. Hybrid device consists of two main components; recentering wires of shape memory alloy (SMA) and steel pipe section as an energy dissipater element. This approach concentrates damage in the steel pipe and prevents the main structural members from yielding. By regulation of the main adjustable design parameter, an optimum performance of the device is obtained. The effectiveness of the device in passive control of structures is evaluated through nonlinear time history analyses of a five-story steel frame with and without the hybrid device. Comparing the results proves that the hybrid device has a considerable potential to mitigate the residual drift ratio, peak absolute acceleration and peak interstory drift of the structure.

마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용 (Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability)

  • 허종완;박지웅
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.377-387
    • /
    • 2014
  • 본 연구는 지진에 대한 구조물의 손상을 최소화 하기 위하여 슬립 저항력을 활용한 새로운 형태의 마찰 댐퍼형 가새 시스템의 설계와 개발을 주로 다루고자 한다. 가새 부재 내에서 전단력에 의한 마찰 거동으로 상당량의 에너지를 수동적으로 소산하기 위하여 플레이트 전단 이음부 위에 슬롯 형태의 볼트 구멍을 설치한다. 여기에 전단 마찰 거동으로 인해 발생되는 잔류변형을 줄이고자 상온에서 원형복원이 가능한 초탄성 형상합금 와이어를 꼬아서 만든 연선을 설치하여 댐퍼 시스템 내에 복원성을 증진 시켰다. 기존에 주로 사용된 수동적인 변위 제어 장치와 비교하여 본 연구에서 다루고자 하는 자동복원이 가능한 마찰 댐퍼형 가새 시스템은 중심 가새 프레임 구조물에 손쉽게 설치하여 지진발생 후에 구조물에 발생하는 층간 잔류변위를 최소화하여 유지 보수에 소모되는 비용의 대폭적인 절감을 기대할 수 있다. 본 연구에서는 자동복원이 가능한 마찰 댐퍼형 가새 시스템의 역학적인 거동 메커니즘을 살펴보고 실험값으로 보정되어 신뢰성을 확보한 스프링 모델을 사용하여 해석을 실시하였다. 시스템에 다양한 설계 변수를 적용하여 복원성과 에너지 소산 능력 측면에서 제안된 댐퍼의 성능 동향을 분석을 하고 최적의 설계 방식을 제안하고자 한다. 마지막으로 자동복원이 가능한 마찰 댐퍼를 중심 가새 프레임 구조물에 설치하여 비선형 동적 해석을 실시하고 기존의 시스템과 비교하여 성능적인 우수성을 입증하고자 한다.

Mechanics of a variable damping self-centering brace: Seismic performance and failure modes

  • Xie, Xing-Si;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 2019
  • The force-deformation behavior, strain distribution and failure modes of a variable damping self-centering brace (VD-SCB) are theoretically analyzed, experimentally studied, and numerically simulated to guide its design. The working principle of the brace is explained by describing the working stages and the key feature points of the hysteretic curve. A large-scale brace specimen was tested under different sinusoidal excitations to analyze the recentering capability and energy dissipation. Results demonstrate that the VD-SCB exhibits a full quasi-flag-shaped hysteretic response, high ultimate bearing capacity, low activation force and residual deformation, and excellent recentering and energy dissipation capabilities. Calculation equations of the strain distribution in different parts of the brace are proposed and are compared with the experimental data and simulated results. The developments of two failure modes are compared. Under normal circumstances, the brace fails due to the yielding of the spring blocking plates, which are easily replaced to restore the normal operating conditions of the brace. A brief description of the design procedure of the brace is proposed for application.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Temperature effect on seismic performance of CBFs equipped with SMA braces

  • Qiu, Canxing;Zhao, Xingnan
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.495-508
    • /
    • 2018
  • Shape memory alloys (SMAs) exhibit superelasticity given the ambient temperature is above the austenite finish temperature threshold, the magnitude of which significantly depends on the metal ingredients though. For the monocrystalline CuAlBe SMAs, their superelasticity was found being maintained even when the ambient temperature is down to $-40^{\circ}C$. Thus this makes such SMAs particularly favorable for outdoor seismic applications, such as the framed structures located in cold regions with substantial temperature oscillation. Due to the thermo-mechanical coupling mechanism, the hysteretic properties of SMAs vary with temperature change, primarily including altered material strength and different damping. Thus, this study adopted the monocrystalline CuAlBe SMAs as the kernel component of the SMA braces. To quantify the seismic response characteristics at various temperatures, a wide temperature range from -40 to $40^{\circ}C$ are considered. The middle temperature, $0^{\circ}C$, is artificially selected to be the reference temperature in the performance comparisons, as well the corresponding material properties are used in the seismic design procedure. Both single-degree-of-freedom systems and a six-story braced frame were numerically analyzed by subjecting them to a suite of earthquake ground motions corresponding to the design basis hazard level. To the frame structures, the analytical results show that temperature variation generates minor influence on deformation and energy demands, whereas low temperatures help to reduce acceleration demands. Further, attributed to the excellent superelasticity of the monocrystalline CuAlBe SMAs, the frames successfully maintain recentering capability without leaving residual deformation upon considered earthquakes, even when the temperature is down to $-40^{\circ}C$.

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.