• Title/Summary/Keyword: Receiver operating characteristic curve

Search Result 528, Processing Time 0.022 seconds

Relationship between 18F-FDG PET/CT Semi-Quantitative Parameters and International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society Classification in Lung Adenocarcinomas

  • Lihong Bu;NingTu;Ke Wang;Ying Zhou;Xinli Xie;Xingmin Han;Huiqin Lin;Hongyan Feng
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.112-123
    • /
    • 2022
  • Objective: To investigate the relationship between 18F-FDG PET/CT semi-quantitative parameters and the International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) histopathologic classification, including histological subtypes, proliferation activity, and somatic mutations. Materials and Methods: This retrospective study included 419 patients (150 males, 269 females; median age, 59.0 years; age range, 23.0-84.0 years) who had undergone surgical removal of stage IA-IIIA lung adenocarcinoma and had preoperative PET/CT data of lung tumors. The maximum standardized uptake values (SUVmax), background-subtracted volume (BSV), and background-subtracted lesion activity (BSL) derived from PET/CT were measured. The IASLC/ATS/ERS subtypes, Ki67 score, and epidermal growth factor/anaplastic lymphoma kinase (EGFR/ALK) mutation status were evaluated. The PET/CT semi-quantitative parameters were compared between the tumor subtypes using the Mann-Whitney U test or the Kruskal-Wallis test. The optimum cutoff values of the PET/CT semi-quantitative parameters for distinguishing the IASLC/ATS/ERS subtypes were calculated using receiver operating characteristic curve analysis. The correlation between the PET/CT semi-quantitative parameters and pathological parameters was analyzed using Spearman's correlation. Statistical significance was set at p < 0.05. Results: SUVmax, BSV, and BSL values were significantly higher in invasive adenocarcinoma (IA) than in minimally IA (MIA), and the values were higher in MIA than in adenocarcinoma in situ (AIS) (all p < 0.05). Remarkably, an SUVmax of 0.90 and a BSL of 3.62 were shown to be the optimal cutoff values for differentiating MIA from AIS, manifesting as pure ground-glass nodules with 100% sensitivity and specificity. Metabolic-volumetric parameters (BSV and BSL) were better potential independent factors than metabolic parameters (SUVmax) in differentiating growth patterns. SUVmax and BSL, rather than BSV, were strongly or moderately correlated with Ki67 in most subtypes, except for the micropapillary and solid predominant groups. PET/CT parameters were not correlated with EGFR/ALK mutation status. Conclusion: As noninvasive surrogates, preoperative PET/CT semi-quantitative parameters could imply IASLC/ATS/ERS subtypes and Ki67 index and thus may contribute to improved management of precise surgery and postoperative adjuvant therapy.

Comparison Between Contrast-Enhanced Computed Tomography and Contrast-Enhanced Magnetic Resonance Imaging With Magnetic Resonance Cholangiopancreatography for Resectability Assessment in Extrahepatic Cholangiocarcinoma

  • Jeongin Yoo;Jeong Min Lee;Hyo-Jin Kang;Jae Seok Bae;Sun Kyung Jeon;Jeong Hee Yoon
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.983-995
    • /
    • 2023
  • Objective: To compare the diagnostic performance and interobserver agreement between contrast-enhanced computed tomography (CECT) and contrast-enhanced magnetic resonance imaging (CE-MRI) with magnetic resonance cholangiopancreatography (MRCP) for evaluating the resectability in patients with extrahepatic cholangiocarcinoma (eCCA). Materials and Methods: This retrospective study included treatment-naïve patients with pathologically confirmed eCCA, who underwent both CECT and CE-MRI with MRCP using extracellular contrast media between January 2015 and December 2020. Among the 214 patients (146 males; mean age ± standard deviation, 68 ± 9 years) included, 121 (56.5%) had perihilar cholangiocarcinoma. R0 resection was achieved in 108 of the 153 (70.6%) patients who underwent curative-intent surgery. Four fellowship-trained radiologists independently reviewed the findings of both CECT and CE-MRI with MRCP to assess the local tumor extent and distant metastasis for determining resectability. The pooled area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of CECT and CE-MRI with MRCP were compared using clinical, surgical, and pathological findings as reference standards. The interobserver agreement of resectability was evaluated using Fleiss kappa (κ). Results: No significant differences were observed between CECT and CE-MRI with MRCP in the pooled AUC (0.753 vs. 0.767), sensitivity (84.7% [366/432] vs. 90.3% [390/432]), and specificity (52.6% [223/424] vs. 51.4% [218/424]) (P > 0.05 for all). The AUC for determining resectability was higher when CECT and CE-MRI with MRCP were reviewed together than when CECT was reviewed alone in patients with discrepancies between the imaging modalities or with indeterminate resectability (0.798 [0.754-0.841] vs. 0.753 [0.697-0.808], P = 0.014). The interobserver agreement for overall resectability was fair for both CECT (κ = 0.323) and CE-MRI with MRCP (κ = 0.320), without a significant difference (P = 0.884). Conclusion: CECT and CE-MRI with MRCP showed no significant differences in the diagnostic performance and interobserver agreement in determining the resectability in patients with eCCA.

Cutoff Values for Diagnosing Hepatic Steatosis Using Contemporary MRI-Proton Density Fat Fraction Measuring Methods

  • Sohee Park;Jae Hyun Kwon;So Yeon Kim;Ji Hun Kang;Jung Il Chung;Jong Keon Jang;Hye Young Jang;Ju Hyun Shim;Seung Soo Lee;Kyoung Won Kim;Gi-Won Song
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1260-1268
    • /
    • 2022
  • Objective: To propose standardized MRI-proton density fat fraction (PDFF) cutoff values for diagnosing hepatic steatosis, evaluated using contemporary PDFF measuring methods in a large population of healthy adults, using histologic fat fraction (HFF) as the reference standard. Materials and Methods: A retrospective search of electronic medical records between 2015 and 2018 identified 1063 adult donor candidates for liver transplantation who had undergone liver MRI and liver biopsy within a 7-day interval. Patients with a history of liver disease or significant alcohol consumption were excluded. Chemical shift imaging-based MRI (CS-MRI) PDFF and high-speed T2-corrected multi-echo MR spectroscopy (HISTO-MRS) PDFF data were obtained. By temporal splitting, the total population was divided into development and validation sets. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of the MRI-PDFF method. Two cutoff values with sensitivity > 90% and specificity > 90% were selected to rule-out and rule-in, respectively, hepatic steatosis with reference to HFF ≥ 5% in the development set. The diagnostic performance was assessed using the validation set. Results: Of 921 final participants (624 male; mean age ± standard deviation, 31.5 ± 9.0 years), the development and validation sets comprised 497 and 424 patients, respectively. In the development set, the areas under the ROC curve for diagnosing hepatic steatosis were 0.920 for CS-MRI-PDFF and 0.915 for HISTO-MRS-PDFF. For ruling-out hepatic steatosis, the CS-MRI-PDFF cutoff was 2.3% (sensitivity, 92.4%; specificity, 63.0%) and the HISTO-MRI-PDFF cutoff was 2.6% (sensitivity, 88.8%; specificity, 70.1%). For ruling-in hepatic steatosis, the CS-MRI-PDFF cutoff was 3.5% (sensitivity, 73.5%; specificity, 88.6%) and the HISTO-MRI-PDFF cutoff was 4.0% (sensitivity, 74.7%; specificity, 90.6%). Conclusion: In a large population of healthy adults, our study suggests diagnostic thresholds for ruling-out and ruling-in hepatic steatosis defined as HFF ≥ 5% by contemporary PDFF measurement methods.

Development and Validation of 18F-FDG PET/CT-Based Multivariable Clinical Prediction Models for the Identification of Malignancy-Associated Hemophagocytic Lymphohistiocytosis

  • Xu Yang;Xia Lu;Jun Liu;Ying Kan;Wei Wang;Shuxin Zhang;Lei Liu;Jixia Li;Jigang Yang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.466-478
    • /
    • 2022
  • Objective: 18F-fluorodeoxyglucose (FDG) PET/CT is often used for detecting malignancy in patients with newly diagnosed hemophagocytic lymphohistiocytosis (HLH), with acceptable sensitivity but relatively low specificity. The aim of this study was to improve the diagnostic ability of 18F-FDG PET/CT in identifying malignancy in patients with HLH by combining 18F-FDG PET/CT and clinical parameters. Materials and Methods: Ninety-seven patients (age ≥ 14 years) with secondary HLH were retrospectively reviewed and divided into the derivation (n = 71) and validation (n = 26) cohorts according to admission time. In the derivation cohort, 22 patients had malignancy-associated HLH (M-HLH) and 49 patients had non-malignancy-associated HLH (NM-HLH). Data on pretreatment 18F-FDG PET/CT and laboratory results were collected. The variables were analyzed using the Mann-Whitney U test or Pearson's chi-square test, and a nomogram for predicting M-HLH was constructed using multivariable binary logistic regression. The predictors were also ranked using decision-tree analysis. The nomogram and decision tree were validated in the validation cohort (10 patients with M-HLH and 16 patients with NM-HLH). Results: The ratio of the maximal standardized uptake value (SUVmax) of the lymph nodes to that of the mediastinum, the ratio of the SUVmax of bone lesions or bone marrow to that of the mediastinum, and age were selected for constructing the model. The nomogram showed good performance in predicting M-HLH in the validation cohort, with an area under the receiver operating characteristic curve of 0.875 (95% confidence interval, 0.686-0.971). At an appropriate cutoff value, the sensitivity and specificity for identifying M-HLH were 90% (9/10) and 68.8% (11/16), respectively. The decision tree integrating the same variables showed 70% (7/10) sensitivity and 93.8% (15/16) specificity for identifying M-HLH. In comparison, visual analysis of 18F-FDG PET/CT images demonstrated 100% (10/10) sensitivity and 12.5% (2/16) specificity. Conclusion: 18F-FDG PET/CT may be a practical technique for identifying M-HLH. The model constructed using 18F-FDG PET/CT features and age was able to detect malignancy with better accuracy than visual analysis of 18F-FDG PET/CT images.

Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma

  • Minjae Kim;Jeong Hyun Lee;Leehi Joo;Boryeong Jeong;Seonok Kim;Sungwon Ham;Jihye Yun;NamKug Kim;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek;Ji Ye Lee;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1078-1088
    • /
    • 2022
  • Objective: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal and external validation sets. Results: Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence interval [CI], 0.62-0.89) and 0.77 (95% CI, 0.65-0.88) in the internal and external validation sets, respectively. These were significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40-0.67], p = 0.006), CE-T1WI (0.53 [95% CI, 0.40-0.67], p = 0.012), and clinical parameters (0.53 [95% CI, 0.39-0.67], p = 0.021) in the external validation set. Conclusion: The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive treatment.

Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs

  • Jae Won Choi;Yeon Jin Cho;Ji Young Ha;Yun Young Lee;Seok Young Koh;June Young Seo;Young Hun Choi;Jung-Eun Cheon;Ji Hoon Phi;Injoon Kim;Jaekwang Yang;Woo Sun Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.343-354
    • /
    • 2022
  • Objective: To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children. Materials and Methods: This retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs). Results: The AI model showed an AUROC of 0.922 (95% CI, 0.842-0.969) in the internal test set and 0.870 (95% CI, 0.785-0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%-92.0%) and specificity of 91.3% (95% CI, 79.2%-97.6%) for the internal test set and 78.9% (95% CI, 54.4%-93.9%) and 88.2% (95% CI, 78.7%-94.4%), respectively, for the external test set. With the model's assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020-0.168; p = 0.012) and 0.069 (95% CI, 0.002-0.136; p = 0.043), respectively, but not in the pediatric radiologist with the difference of 0.008 (95% CI, -0.074-0.090; p = 0.850). Conclusion: A deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.

Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study

  • Yeon Soo Kim;Myoung-jin Jang;Su Hyun Lee;Soo-Yeon Kim;Su Min Ha;Bo Ra Kwon;Woo Kyung Moon;Jung Min Chang
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1241-1250
    • /
    • 2022
  • Objective: To conduct a simulation study to determine whether artificial intelligence (AI)-aided mammography reading can reduce unnecessary recalls while maintaining cancer detection ability in women recalled after mammography screening. Materials and Methods: A retrospective reader study was performed by screening mammographies of 793 women (mean age ± standard deviation, 50 ± 9 years) recalled to obtain supplemental mammographic views regarding screening mammography-detected abnormalities between January 2016 and December 2019 at two screening centers. Initial screening mammography examinations were interpreted by three dedicated breast radiologists sequentially, case by case, with and without AI aid, in a single session. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and recall rate for breast cancer diagnosis were obtained and compared between the two reading modes. Results: Fifty-four mammograms with cancer (35 invasive cancers and 19 ductal carcinomas in situ) and 739 mammograms with benign or negative findings were included. The reader-averaged AUC improved after AI aid, from 0.79 (95% confidence interval [CI], 0.74-0.85) to 0.89 (95% CI, 0.85-0.94) (p < 0.001). The reader-averaged specificities before and after AI aid were 41.9% (95% CI, 39.3%-44.5%) and 53.9% (95% CI, 50.9%-56.9%), respectively (p < 0.001). The reader-averaged sensitivity was not statistically different between AI-unaided and AI-aided readings: 89.5% (95% CI, 83.1%-95.9%) vs. 92.6% (95% CI, 86.2%-99.0%) (p = 0.053), although the sensitivities of the least experienced radiologists before and after AI aid were 79.6% (43 of 54 [95% CI, 66.5%-89.4%]) and 90.7% (49 of 54 [95% CI, 79.7%-96.9%]), respectively (p = 0.031). With AI aid, the reader-averaged recall rate decreased by from 60.4% (95% CI, 57.8%-62.9%) to 49.5% (95% CI, 46.5%-52.4%) (p < 0.001). Conclusion: AI-aided reading reduced the number of recalls and improved the diagnostic performance in our simulation using women initially recalled for supplemental mammographic views after mammography screening.

99mTc-3PRGD2 SPECT/CT Imaging for Diagnosing Lymph Node Metastasis of Primary Malignant Lung Tumors

  • Liming Xiao;Shupeng Yu;Weina Xu;Yishan Sun;Jun Xin
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1142-1150
    • /
    • 2023
  • Objective: To evaluate 99mtechnetium-three polyethylene glycol spacers-arginine-glycine-aspartic acid (99mTc-3PRGD2) single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging for diagnosing lymph node metastasis of primary malignant lung neoplasms. Materials and Methods: We prospectively enrolled 26 patients with primary malignant lung tumors who underwent 99mTc-3PRGD2 SPECT/CT and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT imaging. Both imaging methods were analyzed in qualitative (visual dichotomous and 5-point grades for lymph nodes and lung tumors, respectively) and semiquantitative (maximum tissue-to-background radioactive count) manners for the lymph nodes and lung tumors. The performance of the differentiation of lymph nodes with and without metastasis was determined at the per-lymph node station and per-patient levels using histopathological results as the reference standard. Results: Total 42 stations had metastatic lymph nodes and 136 stations had benign lymph nodes. The differences between metastatic and benign lymph nodes in the visual qualitative and semiquantitative analyses of 99mTc-3PRGD2 SPECT/CT and 18F-FDG PET/CT were statistically significant (all P < 0.001). The area under the receiver operating characteristic curve (AUC) in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT was 0.908 (95% confidence interval [CI], 0.851-0.966), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.86 (36/42), 0.88 (120/136), 0.69 (36/52), and 0.95 (120/126), respectively. Among the 26 patients (including two patients each with two lung tumors), 15 had pathologically confirmed lymph node metastasis. The difference between primary lung lesions in patients with and without lymph node metastasis was statistically significant only in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT (P = 0.007), with an AUC of 0.807 (95% CI, 0.641-0.974). Conclusion: 99mTc-3PRGD2 SPECT/CT imaging may notably perform in the direct diagnosis of lymph node metastasis of primary malignant lung tumors and indirectly predict the presence of lymph node metastasis through uptake in the primary lesions.

Diagnostic Performance of 18F-Fluorodeoxyglucose Positron Emission Tomography/CT for Chronic Empyema-Associated Malignancy

  • Miju Cheon;Jang Yoo;Seung Hyup Hyun;Kyung Soo Lee;Hojoong Kim;Jhingook Kim;Jae Il Zo;Young Mog Shim;Joon Young Choi
    • Korean Journal of Radiology
    • /
    • v.20 no.8
    • /
    • pp.1293-1299
    • /
    • 2019
  • Objective: The purpose of this study was to evaluate the diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for chronic empyema-associated malignancy (CEAM). Materials and Methods: We retrospectively reviewed the 18F-FDG PET/CT images of 33 patients with chronic empyema, and analyzed the following findings: 1) shape of the empyema cavity, 2) presence of fistula, 3) maximum standardized uptake value (SUV) of the empyema cavity, 4) uptake pattern of the empyema cavity, 5) presence of a protruding soft tissue mass within the empyema cavity, and 6) involvement of adjacent structures. Final diagnosis was determined based on histopathology or clinical follow-up for at least 6 months. The abovementioned findings were compared between the 18F-FDG PET/CT images of CEAM and chronic empyema. A receiver operating characteristic (ROC) analysis was also performed. Results: Six lesions were histopathologically proven as malignant; there were three cases of diffuse large B-cell lymphoma, two of squamous cell carcinoma, and one of poorly differentiated carcinoma. Maximum SUV within the empyema cavity (p < 0.001) presence of a protruding soft tissue mass (p = 0.002), and involvement of the adjacent structures (p < 0.001) were significantly different between the CEAM and chronic empyema images. The maximum SUV exhibited the highest diagnostic performance, with the highest specificity (96.3%, 26/27), positive predictive value (85.7%, 6/7), and accuracy (97.0%, 32/33) among all criteria. On ROC analysis, the area under the curve of maximum SUV was 0.994. Conclusion: 18F-FDG PET/CT can be useful for diagnosing CEAM in patients with chronic empyema. The maximum SUV within the empyema cavity is the most accurate 18F-FDG PET/CT diagnostic criterion for CEAM.

Comparison of Monoexponential, Biexponential, Stretched-Exponential, and Kurtosis Models of Diffusion-Weighted Imaging in Differentiation of Renal Solid Masses

  • Jianjian Zhang;Shiteng Suo;Guiqin Liu;Shan Zhang;Zizhou Zhao;Jianrong Xu;Guangyu Wu
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.791-800
    • /
    • 2019
  • Objective: To compare various models of diffusion-weighted imaging including monoexponential apparent diffusion coefficient (ADC), biexponential (fast diffusion coefficient [Df], slow diffusion coefficient [Ds], and fraction of fast diffusion), stretched-exponential (distributed diffusion coefficient and anomalous exponent term [α]), and kurtosis (mean diffusivity and mean kurtosis [MK]) models in the differentiation of renal solid masses. Materials and Methods: A total of 81 patients (56 men and 25 women; mean age, 57 years; age range, 30-69 years) with 18 benign and 63 malignant lesions were imaged using 3T diffusion-weighted MRI. Diffusion model selection was investigated in each lesion using the Akaike information criteria. Mann-Whitney U test and receiver operating characteristic (ROC) analysis were used for statistical evaluations. Results: Goodness-of-fit analysis showed that the stretched-exponential model had the highest voxel percentages in benign and malignant lesions (90.7% and 51.4%, respectively). ADC, Ds, and MK showed significant differences between benign and malignant lesions (p < 0.05) and between low- and high-grade clear cell renal cell carcinoma (ccRCC) (p < 0.05). α was significantly lower in the benign group than in the malignant group (p < 0.05). All diffusion measures showed significant differences between ccRCC and non-ccRCC (p < 0.05) except Df and α (p = 0.143 and 0.112, respectively). α showed the highest diagnostic accuracy in differentiating benign and malignant lesions with an area under the ROC curve of 0.923, but none of the parameters from these advanced models revealed significantly better performance over ADC in discriminating subtypes or grades of renal cell carcinoma (RCC) (p > 0.05). Conclusion: Compared with conventional diffusion parameters, α may provide additional information for differentiating benign and malignant renal masses, while ADC remains the most valuable parameter for differentiation of RCC subtypes and for ccRCC grading.