• 제목/요약/키워드: Receiver development

검색결과 742건 처리시간 0.025초

Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma

  • Changsoo Woo;Kwan Hyeong Jo;Beomseok Sohn;Kisung Park;Hojin Cho;Won Jun Kang;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제24권1호
    • /
    • pp.51-61
    • /
    • 2023
  • Objective: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. Materials and Methods: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. Results: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. Conclusion: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.

Development and Validation of 18F-FDG PET/CT-Based Multivariable Clinical Prediction Models for the Identification of Malignancy-Associated Hemophagocytic Lymphohistiocytosis

  • Xu Yang;Xia Lu;Jun Liu;Ying Kan;Wei Wang;Shuxin Zhang;Lei Liu;Jixia Li;Jigang Yang
    • Korean Journal of Radiology
    • /
    • 제23권4호
    • /
    • pp.466-478
    • /
    • 2022
  • Objective: 18F-fluorodeoxyglucose (FDG) PET/CT is often used for detecting malignancy in patients with newly diagnosed hemophagocytic lymphohistiocytosis (HLH), with acceptable sensitivity but relatively low specificity. The aim of this study was to improve the diagnostic ability of 18F-FDG PET/CT in identifying malignancy in patients with HLH by combining 18F-FDG PET/CT and clinical parameters. Materials and Methods: Ninety-seven patients (age ≥ 14 years) with secondary HLH were retrospectively reviewed and divided into the derivation (n = 71) and validation (n = 26) cohorts according to admission time. In the derivation cohort, 22 patients had malignancy-associated HLH (M-HLH) and 49 patients had non-malignancy-associated HLH (NM-HLH). Data on pretreatment 18F-FDG PET/CT and laboratory results were collected. The variables were analyzed using the Mann-Whitney U test or Pearson's chi-square test, and a nomogram for predicting M-HLH was constructed using multivariable binary logistic regression. The predictors were also ranked using decision-tree analysis. The nomogram and decision tree were validated in the validation cohort (10 patients with M-HLH and 16 patients with NM-HLH). Results: The ratio of the maximal standardized uptake value (SUVmax) of the lymph nodes to that of the mediastinum, the ratio of the SUVmax of bone lesions or bone marrow to that of the mediastinum, and age were selected for constructing the model. The nomogram showed good performance in predicting M-HLH in the validation cohort, with an area under the receiver operating characteristic curve of 0.875 (95% confidence interval, 0.686-0.971). At an appropriate cutoff value, the sensitivity and specificity for identifying M-HLH were 90% (9/10) and 68.8% (11/16), respectively. The decision tree integrating the same variables showed 70% (7/10) sensitivity and 93.8% (15/16) specificity for identifying M-HLH. In comparison, visual analysis of 18F-FDG PET/CT images demonstrated 100% (10/10) sensitivity and 12.5% (2/16) specificity. Conclusion: 18F-FDG PET/CT may be a practical technique for identifying M-HLH. The model constructed using 18F-FDG PET/CT features and age was able to detect malignancy with better accuracy than visual analysis of 18F-FDG PET/CT images.

Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma

  • Minjae Kim;Jeong Hyun Lee;Leehi Joo;Boryeong Jeong;Seonok Kim;Sungwon Ham;Jihye Yun;NamKug Kim;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek;Ji Ye Lee;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • 제23권11호
    • /
    • pp.1078-1088
    • /
    • 2022
  • Objective: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal and external validation sets. Results: Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence interval [CI], 0.62-0.89) and 0.77 (95% CI, 0.65-0.88) in the internal and external validation sets, respectively. These were significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40-0.67], p = 0.006), CE-T1WI (0.53 [95% CI, 0.40-0.67], p = 0.012), and clinical parameters (0.53 [95% CI, 0.39-0.67], p = 0.021) in the external validation set. Conclusion: The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive treatment.

Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy

  • Kyung Min Kim;Heewon Hwang;Beomseok Sohn;Kisung Park;Kyunghwa Han;Sung Soo Ahn;Wonwoo Lee;Min Kyung Chu;Kyoung Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제23권12호
    • /
    • pp.1281-1289
    • /
    • 2022
  • Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.

Development of algorithm for work intensity evaluation using excess overwork index of construction workers with real-time heart rate measurement device

  • Jae-young Park;Jung Hwan Lee;Mo-Yeol Kang;Tae-Won Jang;Hyoung-Ryoul Kim;Se-Yeong Kim;Jongin Lee
    • Annals of Occupational and Environmental Medicine
    • /
    • 제35권
    • /
    • pp.24.1-24.15
    • /
    • 2023
  • Background: The construction workers are vulnerable to fatigue due to high physical workload. This study aimed to investigate the relationship between overwork and heart rate in construction workers and propose a scheme to prevent overwork in advance. Methods: We measured the heart rates of construction workers at a construction site of a residential and commercial complex in Seoul from August to October 2021 and develop an index that monitors overwork in real-time. A total of 66 Korean workers participated in the study, wearing real-time heart rate monitoring equipment. The relative heart rate (RHR) was calculated using the minimum and maximum heart rates, and the maximum acceptable working time (MAWT) was estimated using RHR to calculate the workload. The overwork index (OI) was defined as the cumulative workload evaluated with the MAWT. An appropriate scenario line (PSL) was set as an index that can be compared to the OI to evaluate the degree of overwork in real-time. The excess overwork index (EOI) was evaluated in real-time during work performance using the difference between the OI and the PSL. The EOI value was used to perform receiver operating characteristic (ROC) curve analysis to find the optimal cut-off value for classification of overwork state. Results: Of the 60 participants analyzed, 28 (46.7%) were classified as the overwork group based on their RHR. ROC curve analysis showed that the EOI was a good predictor of overwork, with an area under the curve of 0.824. The optimal cut-off values ranged from 21.8% to 24.0% depending on the method used to determine the cut-off point. Conclusion: The EOI showed promising results as a predictive tool to assess overwork in real-time using heart rate monitoring and calculation through MAWT. Further research is needed to assess physical workload accurately and determine cut-off values across industries.

Quantitative Thoracic Magnetic Resonance Criteria for the Differentiation of Cysts from Solid Masses in the Anterior Mediastinum

  • Eui Jin Hwang;MunYoung Paek;Soon Ho Yoon;Jihang Kim;Ho Yun Lee;Jin Mo Goo;Hyungjin Kim;Heekyung Kim;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • 제20권5호
    • /
    • pp.854-861
    • /
    • 2019
  • Objective: To evaluate quantitative magnetic resonance imaging (MRI) parameters for differentiation of cysts from and solid masses in the anterior mediastinum. Materials and Methods: The development dataset included 18 patients from two institutions with pathologically-proven cysts (n = 6) and solid masses (n = 12) in the anterior mediastinum. We measured the maximum diameter, normalized T1 and T2 signal intensity (nT1 and nT2), normalized apparent diffusion coefficient (nADC), and relative enhancement ratio (RER) of each lesion. RERs were obtained by non-rigid registration and subtraction of precontrast and postcontrast T1-weighted images. Differentiation criteria between cysts and solid masses were identified based on receiver operating characteristics analysis. For validation, two separate datasets were utilized: 15 patients with 8 cysts and 7 solid masses from another institution (validation dataset 1); and 11 patients with clinically diagnosed cysts stable for more than two years (validation dataset 2). Sensitivity and specificity were calculated from the validation datasets. Results: nT2, nADC, and RER significantly differed between cysts and solid masses (p = 0.032, 0.013, and < 0.001, respectively). The following criteria differentiated cysts from solid masses: RER < 26.1%; nADC > 0.63; nT2 > 0.39. In validation dataset 1, the sensitivity of the RER, nADC, and nT2 criteria was 87.5%, 100%, and 75.0%, and the specificity was 100%, 40.0%, and 57.4%, respectively. In validation dataset 2, the sensitivity of the RER, nADC, and nT2 criteria was 90.9%, 90.9%, and 72.7%, respectively. Conclusion: Quantitative MRI criteria using nT2, nADC, and particularly RER can assist differentiation of cysts from solid masses in the anterior mediastinum.

다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교 (Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula)

  • 최순영;김형래;김창환;박찬홍;서만철
    • 자원환경지질
    • /
    • 제44권6호
    • /
    • pp.493-502
    • /
    • 2011
  • 본 연구는 지형자료와 Free-air 중력이상을 이용하여 한반도의 모호면 심도 및 지각두께를 계산하였다. Airy-Heiskanen 지각평형 가설에 근거한 Free-air 중력이상에 포함된 지형중력과 연관성 있는 성분들을 파동수상관분석으로 추출하고 이로부터 보상이 이루어진 상태의 중력효과를 계산하였다. 계산된 결과로부터 반복법을 통한 역산을 이용하여 지각과 맨틀의 경계면인 모호면 심도를 도출하였고 역산 시 기존에 연구된 지진파에 의한 20개의 모호면 심도를 활용하여 포텐셜 필드에서 나타날 수 있는 비유일성의 가능성을 최소화하였다. 최종적으로 모호면 심도와 고도 자료를 더하여 한반도 지각두께를 도출하였으며 한반도 평균지각두께는 32.15 km, 표준편차 3.12 km를 나타내었다. 이 연구에서 구한 남한지역의 모호면과 같은 지역의 타 논문결과들과 비교하였을 때 평균 모호면 심도는 각각 31.08 km, 31.96 km, 33.02 km을 나타내고 표준편차는 1.94 km, 1.62 km, 1.77 km을 나타냄으로 각 연구결과의 통계치는 거의 일치하는 것으로 나타났고 모호면 굴곡 역시 공통적으로 태백산맥과 소백산맥을 따라 모호면이 깊어지고 경상분지는 얕아짐을 확인하였다. 또한 지각 내 중력 이상체의 분포에 대한 정보를 포함하고 있는 지형과 비상관된 Freeair 중력이상을 가지고 지열류량분포와 비교하였다. 저주파성분의 지형과 비상관된 Free-air 중력이상과 지열류량분포를 상관 비교한 결과 높은 양의 상관관계를 나타냈고, 특히, 경상분지지역은 높은 지열류량분포가 암석의 밀도보상으로 인해 모호면의 상승을 가져다 준 것으로 보인다. 이러한 결과는 최근 Kim et al.(2008)에서 언급한 경상분지의 높은 지열류량이 맨틀로부터 야기되는 모델과 부합된다는 사실을 뒷받침해주고 있다.

멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용 (Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network)

  • 하태준;김희상;강성욱;이두희;김우진;문기원;최현수;김정현;김윤;박소현;박상원
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.187-201
    • /
    • 2024
  • 골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.

베이지안 확률 기반 범죄위험지역 예측 모델 개발 (Crime Incident Prediction Model based on Bayesian Probability)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제20권4호
    • /
    • pp.89-101
    • /
    • 2017
  • 범죄는 장소나 건축물 용도에 따라 발생빈도와 유형이 다르고, 그 장소를 이용하는 사람들의 특성 및 공간 구조 차이에 의해 다양하게 발생한다. 따라서 공간 및 지역특성을 포함한 공간 빅데이터를 활용하여 지역을 분석해 보면 범죄예방 전략을 마련할 수 있다. 아울러 빅데이터와 지능 정보화시대의 도래에 따라 예측적 경찰활동이 새로운 경찰활동의 패러다임으로 등장하고 있다. 이에 보편적인 지방도시 J시를 대상으로 3개년 동안의 7,420건의 실제 범죄사례를 바탕으로 도시공간의 물리 환경적인 특성을 분석하여 범죄발생공간을 규명하고, 위험지역을 예측해 보고자 하였다. 분석에는 다양한 빅데이터 중 범죄를 유발하는 도시 공간 내 물리 환경적 요소에 한하여 공간 빅데이터를 구축하여 공간회귀분석을 실시하였다. 다음으로 분석결과 도출된 가로폭, 평균 층수, 용적율, 1층 사용용도(제2종 근린생활시설, 상업시설, 유흥시설, 주거시설)을 변수로 베이지안확률 기반 범죄발생 위험성 예측 모형(CIPM: Crime Incident Prediction Model)을 개발하였다. 개발된 모델은 실제 범죄발생 지역과의 중첩분석 및 모델의 정확도를 판단하는 Roc curve 분석을 통해 AUC 값이 0.8로 모델이 적합한 것으로 나타났다. 개발된 모델을 토대로 사례지역의 범죄 위험도를 분석한 결과 범죄발생은 상업 및 유흥시설이 밀집된 지역과 건물층수가 높은 지역, 그리고 상업 및 유흥시설과 주거가 혼재해 있는 블록이 범죄발생 확률이 높은 것으로 나타났다. 본 연구는 단순히 범죄의 공간적 분포와 범죄발생 영향요인을 탐색하는 기존의 연구와 달리 범죄발생 예측모델을 확률론적 관점에서 개발하는 영역으로 한 단계 진전되었다는 점에 의의가 있다.

한국어판 사회적 의사소통 설문지 타당화 연구 (A Validation Study of the Korean Version of Social Communication Questionnaire)

  • 김주현;선우현정;박수빈;노동현;정연경;조인희;조수철;김붕년;신민섭;김재원;박태원;손정우;정운선;유희정
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제26권3호
    • /
    • pp.197-208
    • /
    • 2015
  • Objectives : The purposes of this study were to examine the reliability and validity of the Korean version of Social Communication Questionnaire (K-SCQ) and to determine cut-off scores for diagnosis of autism spectrum disorder (ASD). Methods : A total of 166 subjects with ASD and their 186 unaffected siblings were recruited through child psychiatry clinics of university hospitals. Board certified child psychiatrists screened all probands suspected to have ASD based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition. To confirm the diagnoses, the Korean versions of the Autism Diagnostic Observation Schedule and the Autism Diagnostic Interview-Revised (K-ADI-R) were administered to all the subjects. All parents completed the K-SCQ and Social Responsiveness Scale (SRS). The non-ASD siblings were evaluated with the same instruments as the probands with ASD. We performed a factor analysis to examine the structure of K-SCQ. For testing the validity of K-SCQ, we compared the difference in Lifetime and Current scores of probands with ASD and their non-ASD siblings using t-test and analysis of covariance. Correlations between the K-SCQ and other measurements of ASD symptomatology, including K-ADI-R totals and domain scores and SRS, were examined. Receiver operation characteristic curve analysis was performed to extract cutoff scores discriminating affection status. Results : Four factors were extracted through factor analysis of K-SCQ ; 1) social relation and play, 2) stereotyped behavior, 3) social behavior, and 4) abnormal language. Cronbach's internal consistency was .95 in K-SCQ Lifetime, and .93 in K-SCQ Current. There were significant differences in total score of K-SCQ, both in Lifetime and Current between the ASD group and non-ASD siblings group (p<.05). K-SCQ scores were significantly correlated with K-ADI-R subdomain scores and SRS total scores (p<.05). The best-estimate cut-off scores of K-SCQ for diagnosis of ASD were 12 for 48 months and over, and 10 for below 47 months. Conclusion : Our findings suggest that the K-SCQ is a reliable and valid instrument for screening autistic symptoms in the Korean population. Lower cut-off scores than the original English version might be considered when using it as a screening instrument of ASD.