• Title/Summary/Keyword: Receiver Operating Characteristic

Search Result 668, Processing Time 0.03 seconds

Muscle Radiation Attenuation in the Erector Spinae and Multifidus Muscles as a Determinant of Survival in Patients with Gastric Cancer

  • An, Soomin;Kim, Youn-Jung;Han, Ga Young;Eo, Wankyu
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2022
  • Purpose: To determine the prognostic role of muscle area and muscle radiation attenuation in the erector spinae (ES) and multifidus (MF) muscles in patients undergoing gastrectomy. Methods: Patients with stage I-III gastric cancer undergoing gastrectomy were retrospectively enrolled in this study. Clinicopathologic characteristics were collected and analyzed. Both paraspinal muscle index of ES/MF muscles (PMIEM) and paraspinal muscle radiation attenuation in the same muscles (PMRAEM) were analyzed at the 3rd lumbar level using axial computed tomographic images. Cox regression analysis was applied to estimate overall survival (OS) and disease-free survival (DFS). Results: There was only a weak correlation between PMIEM and PMRAEM (r= 0.28). Multivariate Cox regression revealed that PMRAEM, but not PMIEM, was an important determinant of survival. PMRAEM along with age, tumor-node-metastasis (TNM) stage, perineural invasion, and serum albumin level were significant determinants of both OS and DFS that constituted Model 1. Harrell's concordance index and integrated area under receiver operating characteristic curve were greater for Model 1 than for Model 2 (consisting of the same covariates as Model 1 except PMRAEM) or Model 3 (consisting of only TNM stage). Conclusion: PMRAEM, but not PMIEM, was an important determinant of survival. Because there was only a weak correlation between PMIEM and PMRAEM in this study, it was presumed that they were mutually exclusive. Model 1 consisting of age, TNM stage, perineural invasion, serum albumin level, and PMRAEM was greater than nested models (i.e., Model 2 or Model 3) in predicting survival outcomes.

Diagnostic Criteria of T1-Weighted Imaging for Detecting Intraplaque Hemorrhage of Vertebrobasilar Artery Based on Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage Imaging

  • Lim, Sukjoon;Kim, Nam Hyeok;Kwak, Hyo Sung;Hwang, Seung Bae;Chung, Gyung Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.323-331
    • /
    • 2021
  • Purpose: To investigate the diagnostic criteria of T1-weighted imaging (T1W) and time-of-flight (TOF) imaging for detecting intraplaque hemorrhage (IPH) of a vertebrobasilar artery (VBA) compared with simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) imaging. Materials and Methods: Eighty-seven patients with VBA atherosclerosis who underwent high resolution MR imaging for evaluation of VBA plaque were reviewed. The presence and location of VBA plaque and IPH on SNAP were determined. The signal intensity (SI) of the VBA plaque on T1W and TOF imaging was manually measured and the SI ratio against adjacent muscles was calculated. The receiver-operating characteristic (ROC) curve was used to compare the diagnostic accuracy for detecting VBA IPH. Results: Of 87 patients, 67 had IPH and 20 had no IPH on SNAP. The SI ratio between VBA IPH and temporalis muscle on T1W was significantly higher than that in the no-IPH group (235.9 ± 16.8 vs. 120.0 ± 5.1, P < 0.001). The SI ratio between IPH and temporalis muscle on TOF was also significantly higher than that in the no-IPH group (236.8 ± 13.3 vs. 112.8 ± 7.4, P < 0.001). Diagnostic efficacies of SI ratios on TOF and TIW were excellent (AUC: 0.976 on TOF and 0.964 on T1W; cutoff value: 136.7% for TOF imaging and 135.1% for T1W imaging). Conclusion: Compared with SNAP, cutoff levels of the SI ratio between VBA plaque and temporalis muscle on T1W and TOF imaging for detecting IPH were approximately 1.35 times.

An effective automated ontology construction based on the agriculture domain

  • Deepa, Rajendran;Vigneshwari, Srinivasan
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.573-587
    • /
    • 2022
  • The agricultural sector is completely different from other sectors since it completely relies on various natural and climatic factors. Climate changes have many effects, including lack of annual rainfall and pests, heat waves, changes in sea level, and global ozone/atmospheric CO2 fluctuation, on land and agriculture in similar ways. Climate change also affects the environment. Based on these factors, farmers chose their crops to increase productivity in their fields. Many existing agricultural ontologies are either domain-specific or have been created with minimal vocabulary and no proper evaluation framework has been implemented. A new agricultural ontology focused on subdomains is designed to assist farmers using Jaccard relative extractor (JRE) and Naïve Bayes algorithm. The JRE is used to find the similarity between two sentences and words in the agricultural documents and the relationship between two terms is identified via the Naïve Bayes algorithm. In the proposed method, the preprocessing of data is carried out through natural language processing techniques and the tags whose dimensions are reduced are subjected to rule-based formal concept analysis and mapping. The subdomain ontologies of weather, pest, and soil are built separately, and the overall agricultural ontology are built around them. The gold standard for the lexical layer is used to evaluate the proposed technique, and its performance is analyzed by comparing it with different state-of-the-art systems. Precision, recall, F-measure, Matthews correlation coefficient, receiver operating characteristic curve area, and precision-recall curve area are the performance metrics used to analyze the performance. The proposed methodology gives a precision score of 94.40% when compared with the decision tree(83.94%) and K-nearest neighbor algorithm(86.89%) for agricultural ontology construction.

Prediction of pathogen positive-culture results in acute poisoning patients with suspected aspiration (흡인이 의심되는 급성 중독환자에서 병원균 양성 배양 결과의 예측)

  • Baek Sungha;Park Sungwook
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.20 no.2
    • /
    • pp.75-81
    • /
    • 2022
  • Purpose: This study sought to compare the characteristics of patients with pathogen-positive and negative cultures, and to investigate factors predicting pathogen-positive culture results in patients of acute poisoning with suspected aspiration. Methods: Consecutive patients with acute poisoning admitted to an intensive care unit between January 2016 and December 2018 were retrospectively studied. Respiratory specimens were collected from the enrolled patients at the time of the suspected aspiration. We compared the characteristics of patients with pathogen-positive and negative culture results and analyzed the causative pathogens. Results: Among the 526 patients, 325 showed no clinical features that could be attributed to aspiration, and 201 patients had clinical features suggestive of aspiration. Of these, 113 patients had pathogen-positive culture, 61 were negative, and the specimens of 27 patients contained poor-quality sputum. In univariate analysis, patients with a positive culture showed a longer time to culture from ingestion (p=0.01), faster heart rate (p=0.01), and higher partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2) (p=0.02) than patients with negative culture. Multivariate analysis demonstrated that PaO2/FiO2 (adjusted odd ratio, 1.005; 95% confidence interval [CI], 1.002-1.008; p=0.005) was a significant risk factor for pathogen-positive culture. The area under the receiver operating characteristic curve of PaO2/FiO2 was 0.591 (95% CI, 0.510-0.669, p=0.05). Gram-negative pathogens (GNPs) were predominant and at least one GNP was observed in 84 (73.3%) patients among those with pathogen positive culture. Conclusion: We failed to find any clinical factors associated with positive culture results. Antibiotics that cover GNPs could be considered when deciding the initial antibiotic regimen at the time of suspected aspiration.

Using Continuous Flow Data to Predict the Course of Air Leaks After Lung Lobectomy

  • Jaeshin Yoon;Kwanyong Hyun;Sook Whan Sung
    • Journal of Chest Surgery
    • /
    • v.56 no.3
    • /
    • pp.179-185
    • /
    • 2023
  • Background: Assessments of air leaks are usually performed subjectively, precluding the use of air leaks as an evaluation factor. We aimed to identify objective parameters as predictive factors for prolonged air leak (PAL) and air leak cessation (ALC) from air flow data produced by a digital drainage system. Methods: Flow data records of 352 patients who underwent lung lobectomy were reviewed, and flow data at designated intervals (1, 2, and 3 hours postoperatively [POH] and 3 times a day thereafter [06:00, 13:00, 19:00]) were extracted. ALC was defined by flow less than 20 mL/min over 12 hours, and PAL was defined as ALC after 5 days. Cumulative incidence curves were obtained using Kaplan-Meier estimates of time to ALC. Cox regression analysis was performed to determine the effects of variables on the rate of ALC. Results: The incidence of PAL was 18.2% (64/352). Receiver operating characteristic curve analysis showed cut-off values of 180 mL/min for the flow at 3 POH and 73.3 mL/min for the flow on postoperative day 1; the sensitivity and specificity of these values were 88.9% and 82.5%, respectively. The rates of ALC by Kaplan-Meier analysis were 56.8% at 48 POH and 65.6% at 72 POH. Multivariate Cox regression analysis revealed that the flow at 3 POH (≤80 mL/min), operation time (≤220 minutes), and right middle lobectomy independently predicted ALC. Conclusion: Air flow measured by a digital drainage system is a useful predictor of PAL and ALC and may help optimize the hospital course.

Analysis of freeze-thaw conditions of soil using surface state factor and synthetic aperture radar (지표상태인자와 영상레이더를 활용한 토양의 동결-융해 상태 분석)

  • Yonggwan Lee;Jeehun Chung;Wonjin Jang;Wonjin Kim;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.53-53
    • /
    • 2023
  • 본 연구에서는 토양의 동결-융해 상태 구분을 위해 영상레이더(Synthetic Aperture Radar) 자료를 활용해 지표상태인자(Surface State Factor, SSF)를 산정하고, 관측 토양수분 자료 및 지표면 온도(Land Surface Temperature, LST) 자료와의 비교를 통해 SSF의 정확도를 분석하였다. SSF 산정은 용담댐 유역을 포함한 인근 40×50 km2의 영역(N35°35'~36°00', E127°20'~127°45')에 대한 9개의 토양수분 관측지점(계북, 천천, 상전, 안천, 부귀, 주천, 장수읍, 진안읍, 무주읍)을 대상으로 연구를 수행하였으며, 이를 위해 2015년부터 2019년까지의 해당 지점의 토양수분 관측자료와 Sentinel-1A Interferometric Wide swath (IW) 모드의 Ground Range Detected (GRD) product를 구축하여 활용하였다. SSF 자료의 정확도 분석을 위한 토양수분 관측지점에 대한 LST 자료는 인근 7개 기상관측소 지점(전주, 금산, 임실, 남원, 장수, 함양군, 거창)의 관측자료로부터 역거리가중법을 통해 산정하였다. Receiver Operating Characteristic (ROC) 분석을 통한 겨울철(12-2월)의 SSF 산정 정확도를 평가한 결과, 지표면 온도 자료와의 평균 정확도는 0.75(0.48-0.87)로 나타났다. 그러나, 지표면 온도가 0℃ 이상일 때 SSF가 동결 상태로 나타나는 오차가 관측되었으며, 이는 여름철 후방산란계수의 평균값과 겨울철 후방산란계수의 평균값을 통해 산정하는 SSF 산정 수식의 특성 때문으로 이 값의 조정을 통해 오차를 개선할 수 있음을 보였다.

  • PDF

Analysis of agricultural drought status using SAR-based soil moisture imageries (SAR 영상 기반 토양수분을 활용한 농업적 가뭄 분석)

  • Chanyang Sur;Hee-Jin Lee;Yonggwan Lee;Jeehun Chung;Seongjoon Kim;Won-Ho Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.418-418
    • /
    • 2023
  • 가뭄은 농업, 환경 및 사회경제적인 조건에 영향을 미치는 주요 자연 재해로 우리나라는 2015년부터 지속적인 가뭄 상황을 겪고 있다. 지속된 가뭄으로 인해 토양의 수분함량이 변화하여 농작물의 생장 활동 등에 영향을 미쳐 수확량이 낮아질 수 있다. 토양수분은 경사나 토질 등 지형학적인 특성에 따라 민감하게 반응하는 수문인자로, 특성을 광역적으로 정확하게 판단하기 어렵기 때문에 고해상도 원격탐사 자료를 활용하여 토양수분의 거동을 파악하는 연구들이 진행되고 있다. 특히, Synthetic Aperture Radar (SAR) 관측은 작물과 기본적인 토양의 유전체 및 기하학적 특성에 민감하게 반응하기 때문에, 토양수분 및 농업적 가뭄 분석 연구에 활용되고 있다. 본 연구는 2025년 발사될 예정인 C-band SAR 수자원 위성 산출물인 토양수분을 적용한 농업적 가뭄지수산정 알고리즘 기법 개발 연구를 위하여, 수자원 위성과 제원이 비슷한 Sentinel-1 자료를 통해 산정된 토양수분을 활용하여 농업적 가뭄지수인 Soil Moisture Drought Index (SMDI)를 산정하고자 한다. 산정된 SMDI의 검증을 위해 지점 관측된 토양수분 자료와 비교하여 Receiver Operating Characteristic (ROC) 분석 및 error matrix 기법 등을 활용하여 산정된 농업적 가뭄지수의 지역적 적용성을 파악하고자 한다. SAR 자료 기반의 농업적 가뭄지수 산정 알고리즘을 개발함으로써, 향후 제공될 수자원 위성의 자료를 활용한 가뭄 분석 연구에 활용될 수 있을 것으로 판단된다.

  • PDF

Deep learning method for compressive strength prediction for lightweight concrete

  • Yaser A. Nanehkaran;Mohammad Azarafza;Tolga Pusatli;Masoud Hajialilue Bonab;Arash Esmatkhah Irani;Mehdi Kouhdarag;Junde Chen;Reza Derakhshani
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.327-337
    • /
    • 2023
  • Concrete is the most widely used building material, with various types including high- and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.

An Experimental Study on AutoEncoder to Detect Botnet Traffic Using NetFlow-Timewindow Scheme: Revisited (넷플로우-타임윈도우 기반 봇넷 검출을 위한 오토엔코더 실험적 재고찰)

  • Koohong Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.687-697
    • /
    • 2023
  • Botnets, whose attack patterns are becoming more sophisticated and diverse, are recognized as one of the most serious cybersecurity threats today. This paper revisits the experimental results of botnet detection using autoencoder, a semi-supervised deep learning model, for UGR and CTU-13 data sets. To prepare the input vectors of autoencoder, we create data points by grouping the NetFlow records into sliding windows based on source IP address and aggregating them to form features. In particular, we discover a simple power-law; that is the number of data points that have some flow-degree is proportional to the number of NetFlow records aggregated in them. Moreover, we show that our power-law fits the real data very well resulting in correlation coefficients of 97% or higher. We also show that this power-law has an impact on the learning of autoencoder and, as a result, influences the performance of botnet detection. Furthermore, we evaluate the performance of autoencoder using the area under the Receiver Operating Characteristic (ROC) curve.

Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm

  • Ye Ra Choi;Soon Ho Yoon;Jihang Kim;Jin Young Yoo;Hwiyoung Kim;Kwang Nam Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • Background: Inactive or old, healed tuberculosis (TB) on chest radiograph (CR) is often found in high TB incidence countries, and to avoid unnecessary evaluation and medication, differentiation from active TB is important. This study develops a deep learning (DL) model to estimate activity in a single chest radiographic analysis. Methods: A total of 3,824 active TB CRs from 511 individuals and 2,277 inactive TB CRs from 558 individuals were retrospectively collected. A pretrained convolutional neural network was fine-tuned to classify active and inactive TB. The model was pretrained with 8,964 pneumonia and 8,525 normal cases from the National Institute of Health (NIH) dataset. During the pretraining phase, the DL model learns the following tasks: pneumonia vs. normal, pneumonia vs. active TB, and active TB vs. normal. The performance of the DL model was validated using three external datasets. Receiver operating characteristic analyses were performed to evaluate the diagnostic performance to determine active TB by DL model and radiologists. Sensitivities and specificities for determining active TB were evaluated for both the DL model and radiologists. Results: The performance of the DL model showed area under the curve (AUC) values of 0.980 in internal validation, and 0.815 and 0.887 in external validation. The AUC values for the DL model, thoracic radiologist, and general radiologist, evaluated using one of the external validation datasets, were 0.815, 0.871, and 0.811, respectively. Conclusion: This DL-based algorithm showed potential as an effective diagnostic tool to identify TB activity, and could be useful for the follow-up of patients with inactive TB in high TB burden countries.