• Title/Summary/Keyword: Receiver Module

Search Result 325, Processing Time 0.023 seconds

Characterization of Electrical Crosstalk in 1.25 Gbps Optoelectrical Triplex Transceiver Module for Ethernet Passive Optical Networks (이더넷 광 네트워크 구현을 위한 1.25 Gbps 광전 트라이플렉스 트랜시버 모듈의 전기적 혼신의 분석)

  • Kim Sung-Il;Lee Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-34
    • /
    • 2005
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a triplex transceiver module for ethernet Passive optical networks(EPONS). And we improved the electrical crosstalk levels using Dummy ground lines with signal lines. The triplex transceiver module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and a analog photodetector as a community antenna television signal receiver. And there are integrated on silicon substrate. The digital receiver and analog receiver sensitivity have to meet -24 dBm at $BER=10^{-l2}$ and -7.7 dBm at 44 dB SNR. And the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the Dummy ground line with $100\;{\mu}m$ space from signal lines and separates 4 mm among devices respectively, is satisfied the electrical crosstalk level compared to simple structure. This proposed structure can be easily implemented with design convenience and greatly reduced the silicon substrate size about $50\%$.

An improved 1-D thermal model of parabolic trough receivers: Consideration of pressure drop and kinetic energy loss effects

  • Yassine Demagh
    • Advances in Energy Research
    • /
    • v.8 no.1
    • /
    • pp.21-39
    • /
    • 2022
  • In this study, the first law of thermodynamics was used to establish a one-dimensional (1-D) thermal model for parabolic trough receiver (PTR) taking into account the pressure drop and kinetic energy loss effects of the heat transfer fluid (HTF) flowing inside the absorber tube. The validation of the thermal model with data from the SEGS-LS2 solar collector-test showed a good agreement, which is consistent with the previously established models for the conventional straight and smooth (CSS) receiver where the effects of pressure drop and kinetic energy loss were neglected. Based on the developed model and code, a comparative study of the newly designed parabolic trough S-curved receiver versus the CSS receiver was conducted and solar unit's performances were analyzed. Without any supplementary devices, the S-curved receiver enhances the performance of the parabolic trough module, with a maximum of 0.16% compared to CSS receiver with the same sizes and mass flow rates. Thermal losses were reduced by 7% due to the decrease in the temperature of the outer surface of the receiver tube. In addition, it has been shown that from a mass flow rate of 9.5 kg/s the heat losses of the S-curved receiver remain unchanged despite the improvement in the heat transfer rate.

Implementation of Implantable Bluetooth Bio-telemetry System for Transmitting Acoustic Signals in the Body with Wireless Recharging Function (무선 충전 가능한 블루투스 방식의 체내 음향신호 전송용 이식형 바이오 텔레메트리 시스템 구현)

  • Lee, Sang-June;Kim, Myoung Nam;Lee, Jyung Hyun;Lim, Hyung-Gyu;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.652-662
    • /
    • 2015
  • It is necessary to develop small, implantable bio-telemetry systems which can measure and transmit patients' bio-signals from internal body to external receiver. When measuring bio-signals, like electrical bio-signals, acoustic bio-signal measurement has also a big clinical usefulness. But, sound signal has larger frequency bandwidth than any other bio-signals. When considering these issues, a wireless telemetry system which has rapid data transmission rate proportional to wide frequency bandwidth is necessary to be developed. The bluetooth module is used to overcome the data rate limitation caused by the large frequency bandwidth. In this paper, a novel multimedia bluetooth biotelemetry system was developed which consists of transmitter module located in the body and receiver device located outside of the body. The transmitter consists of microphone, bluetooth, and wireless charging device. And the receiver consists of bluetooth and codec system. The sound inside the skin is captured by microphone and sent to receiver by bluetooth while charging. The wireless charging system constantly supplies the electric power to the system. To verify the performance of the developed system, an in vitro experiment has been performed. The results show that the proposed biotelemetry system has ability to acquire the sound signals under the skin.

Design of DGNSS Software RSIM's Data Receive Module for G-III GNSS Receiver in SBAS Reference Station (SBAS 기준국용 G-III 수신기 연동을 위한 DGNSS SW RSIM의 수신 모듈 설계)

  • Jang, Wonseok;Park, Sanghyun;Seo, Kiyeol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.297-300
    • /
    • 2016
  • The typical Differential Global Navigation Satellite System service of South Korea is the Ground Based Differential GNSS service. South Korea building the Satellite-Based Augmentation System for GNSS to expand the Differential GNSS service. The satellite-based differential GNSS serive is called the SBAS(Satellite Based Augmentation System). The SBAS reference station on ground should be installed to operate the SBAS service alike the ground based augmentation system. That SBAS reference station can be installed with ground based DGNSS reference station. To make the SBAS reference station combined with the ground based DGNSS reference station, DGNSS system should be connected to NovAtel's G-III receiver. In this paper, the DGNSS software reference station's software module architecture was changed and G-III interface module was designed to use the G-III receiver.

  • PDF

A Study on Robustness Improvement of the Semiconductor Transmitter and Receiver Module By the Bias Sequencing and Tuning the Switching Time (바이어스 시퀀스와 스위칭 타임 튜닝을 통한 반도체 송수신 모듈의 강건성 향상에 대한 연구)

  • Yoo, Woo-Sung;Keum, Jong-Ju;Kim, Do-Yeol;Han, Sung
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.251-259
    • /
    • 2016
  • This paper describes that how to enhance the robustness of semiconductor TRM(Transmitter and Receiver Module) through the bias sequencing and tuning the switching time. Previous circuit designs focused on improving the MDS(Minimum Detection Signal) performance. Because TRM has critical problem which transmission output signal leak into receiver by it's compact design. Under this condition, TRM was frequently broken down within the MTBF(Mean Time Between Failure). This study proposes the bias sequencing and tuning the switching time to improve above problem. At first, we collected major failure symptom and infer it's cause. Second, we demonstrated it's effect by derive the improvement method and apply it to our system. And finally we can convinced that the proposed method clear the frequent failure problem with its lack of isolation.

Influence and analysis of a commercial ZigBee module induced by gamma rays

  • Shin, Dongseong;Kim, Chang-Hwoi;Park, Pangun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1483-1490
    • /
    • 2021
  • Many studies are undertaken into nuclear power plants (NPPs) in preparation for accidents exceeding design standards. In this paper, we analyze the applicability of various wireless communication technologies as accident countermeasures in different NPP environments. In particular, a commercial wireless communication module (WCM) is investigated by measuring leakage current and packet error rate (PER), which vary depending on the intensity of incident radiation on the module, by testing at a Co-60 gamma-ray irradiation facility. The experimental results show that the WCMs continued to operate after total doses of 940 and 1097 Gy, with PERs of 3.6% and 0.8%, when exposed to irradiation dose rates of 185 and 486 Gy/h, respectively. In short, the lower irradiation dose rate decreased the performance of WCMs more than the higher dose rate. In experiments comparing the two communication protocols of request/response and one-way, the WCMs survived up to 997 and 1177 Gy, with PERs of 2% and 0%, respectively. Since the request/response protocol uses both the transmitter and the receiver, while the one-way protocol uses only the transmitter, then the electronic system on the side of the receiver is more vulnerable to radiation effects. From our experiments, the tested module is expected to be used for design-based accidents (DBAs) of "Category A" type, and has confirmed the possibility of using wireless communication systems in NPPs.

Design and Implementation of Multifunction 2-Channel Receiver for 3 Dimensional Phased Array Radar (3차원 위상배열 레이다용 다기능 2채널 수신기 설계 및 제작)

  • 강승민;양진모;송재원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.1-12
    • /
    • 1998
  • We have implemented receiver for a 3 Dimensional Phased-Array Radar detecting the azimuth angle, the altitude, the range of a target on real time. This system consists of high frequency module, which protects receiver and controls sensitivity, intermediate frequency module, monopulse detector, IQ phase detector, AGC controller. A two-channel receiver with same function is implemented for increasing accuracy of target altitude data by amplitude comparison monopulse method. The TSS sensitivity of the receiver is -98dBm. The bandwidth of the receiver is 500 MHz. We can control the system gain manually by 100 dB when be AGC off. The gain and phase unbalance of two channels is 5 dB and 30 degree, respectively. The image rejection rate of the IQ detector is 30 dB. We used duroid substrate and package- type device.

  • PDF

Development of Full Segment Digital Broadcast Receiver based on the ISDB-T (ISDB-T 기반의 FULL-SEG 방송 수신 장치 개발)

  • Ohm, Woo-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.139-146
    • /
    • 2017
  • The ISDB-T(Integrated Service Digital Broadcasting Terrestrial) can be used in the multipath and impulsive noise, also it provide good performance over mobile reception environment since it use the OFDM(Orthogonal Frequency Division Multiplexing) based transmission technology and time interleaving technology. One segment and full segment are divided according to the number of the assigned segment. And one-segment broadcasting receiver can design and implement without high levels of technology than the full-segment broadcasting receiver using 64QAM(64 Quadrature Amplitude Modulation) since it uses QPSK(Quadrature Phase Shift Keying) modulation/demodulation. However, it has a constraint in the display size and resolution due to data-rate limits. In this paper, we design and implementation of full-segment ISDB-T receiver module which support HD resolution for set-top box, digital TV, navigation. In experimental results, the implemented full-segment ISDB-T receiver module was satisfactory for all of the desired functions.

Development of an Active Tire Pressure Control System Using a Tire Simulator (타이어 시뮬레이터를 이용한 능동형 타이어 공기압 제어 시스템 개발)

  • Lee, Kyu-Cheol;Ryu, Kwan-Hee;Rhee, Joong-Yong;Hong, Ji-Hyang;Kim, Hyeok-Joo;Yu, Ji-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • This study was performed to develop an active tire pressure control system that can adjust tire pressure to the optimum level according to traveling and working condition of agricultural tractor. For the development of active tire pressure control system, pneumatic supplier, solenoid valve block including pneumatic supply line, infinite rotation type pneumatic supplier with rotary joint unit, tire pressure transceiver module and control algorithm were developed. Also, tire simulator was developed. Using this tire simulator, the feasibility of each part constructing actual system was tested by checking the performance. The average communication success ratio was 98.3% between tire pressure transmitter and receiver module according to the various tire rotational speed and data receipt position of receiver module. The communication performance of the developed transmitter and receiver module was very stable in any condition. The tire pressure control system was accomplished by using the proportional control algorithm in this study. Also tire pressure control performance of developed control system was analyzed by using the tire simulator. As a result of control performance analysis to the developed system, the developed control system took 307 seconds to inflate agricultural tractor's tire from 50 kPa to 180 kPa. In opposite case, it took 210 seconds. Also it was able to control the tire pressure accurately under ${\pm}0.9%$ (FS) in any condition.

Design and Fabrication of the Ka-Band Receive Module for Millimeter Wave Seeker (밀리미터파 탐색기를 위한 Ka-대역 수신기 모듈의 설계 및 제작)

  • Yang, Seong-Sik;Lim, Ju-Hyun;Song, Sung-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • In this paper, we introduced the design technique about a Ka band receive module for millimeter wave seekers. The receiver module consists of a waveguide, circulator and transition for antenna connection, and a limiter and gain control amplifier for receiver protection. This module is comprised of a sum, azimuth and elevation channel for receiving monopules signal, and a SLB channel for the acquisition of jamming signal. In this paper, receiver gain and range of gain control dependent on ADC nonlinear characteristic was analyzed and designed for wide dynamic range receive. In the test result of the fabricated Ka-band receive, the frequency band is 1 GHz, the noise figure is as low as 8.2 dB, the gain is $56{\pm}2dB$, the dynamic range is 135 dB, the gain congtrol is more than 86 dB, the channel isolation is more than 35 dB.