• Title/Summary/Keyword: Receiver Delay

Search Result 418, Processing Time 0.026 seconds

Design and Fabrication of Compressive Receiver for RFID Signal Detection (RFID 신호 탐지용 컴프레시브 수신기의 설계 및 제작)

  • Jo, Won-Sang;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.321-330
    • /
    • 2010
  • In this paper, the theoretical background and the specific implementation method of a compressive receiver for RFID signal detection as well as the design method of DDL(Dispersive Delay Line) and chirp LO are described. DDL, which is one of the main components of the compressive receiver, is designed to have $13{\mu}s$ dispersive delay time and 6 MHz bandwidth using the SAW technique based on $LiNbO_3$ material. The chirp LO is designed using DDS(Direct Digital Synthesizer). Also the compressive receiver is fabricated to be installed into the RFID reader. Test results show the maximum frequency error of 25 kHz for single signal input, the receiver sensitivity of -44 dBm, and the maximum frequency error is 75 kHz for 6 multi-tone input signals. These results indicate that the fabricated compressive receiver is working well even in dense RFID operating environments.

Performance Analysis of a Vector DLL Based GPS Receiver

  • Lim, Deok Won;Choi, Heon Ho;Lee, Sang Jeong;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • For a Global Positioning System (GPS) receiver, it is known that a Vector Delay Locked Loop (DLL) in which the code signals of each satellite are tracked in parallel by using navigation results shows better performance in the aspect of the tracking accuracy and the robustness than that of a Scalar DLL. However, the quantitative analysis and the logical grounds for that performance enhancement of the Vector DLL are not sufficient. This paper, therefore, proposes the structure of the GPS receiver with the Vector DLL and analyzes the performance of it. The tracking and the positioning accuracy of the Vector DLL are theoretically analyzed and confirmed by simulation results. From the simulation results, it can be seen that the tracking and positioning accuracy has been improved about 30% in case that the receiver is static and the positioning is conducted for every Pre-detection Integration Time (PIT) while C/N0 is 45 dB-Hz.

A CMOS IR-UWB RFIC for Location Based Systems (위치 기반 시스템을 위한 CMOS IR-UWB RFIC)

  • Lee, Jung Moo;Park, Myung Chul;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.67-73
    • /
    • 2015
  • This paper presents a fully integrated 3 - 5 GHz IR-UWB(impulse radio ultra-wide band) RFIC for Location based system. The receiver architecture adopts the energy detection method and for high speed sampling, the equivalent time sampling technique using the integrated DLL(delay locked loop) and 4 bit ADC. The digitally synthesized UWB impulse generator with low power consumption is also designed. The designed IR-UWB RFIC is implemented on $0.18{\mu}m$ CMOS technology. The receiver's sensitivity is -85.7 dBm and the current consumption of receiver and transmitter is 32 mA and 25.5 mA respectively at 1.8 V supply.

Ranging Performance for Spoofer Localization using Receiver Clock Offset

  • Lee, Byung-Hyun;Seo, Seong-Hun;Jee, Gyu-In;Yeom, Dong-Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 2016
  • In this paper, the performance of ranging measurement, which is generated using two receiver clock offsets in one receiver, was analyzed. A spoofer transmits a counterfeited spoofing signal which is similar to the GPS signal with hostile purposes, so the same tracking technique can be applied to the spoofing signal. The multi-correlator can generate two receiver clock offsets in one receiver. The difference between these two clock offsets consists of the path length from the spoofer to the receiver and the delay of spoofer system. Thus, in this paper, the ranging measurement was evaluated by the spoofer localization performance based on the time-of-arrival (TOA) technique. The results of simulation and real-world experiments show that the position and the system clock offset of the spoofer could be estimated successfully.

Synchronization Method using Transmission Delay and Synchronization Interval Control (전송 지연 시간과 동기 구간 조정에 의한 동기화 기법)

  • 김지연
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.4
    • /
    • pp.94-99
    • /
    • 2001
  • Recently a lot of informations is interchanged among many users through the network such as Internet. In this situation. multimedia data transfer has some problems. that are jitter, the difference of delay in arriving packets, and loss of data due to the various delay between sender and receiver. The arriving data packets are not synchronized because of those problems. Especially, an efficient method is needed to revise the sudden large changes of the delay, called spike-like delay. which is occured in explosive growth of networking. We propose efficient synchronization algorithm which controls synchronization interval and adjusts to sudden changes in networks. The algorithm, a receiver-driven adaptive synchronization method, is to synchronize the arriving data packets against spike-like delay and decrease the loss of them. In addition, another method is proposed in this paper. The method uses the probabilistic features of delay distribution appearing in general network. It is evaluated for the loss of data packets and the delay times.

  • PDF

An Adaptive Transversal Filter for GNSS Receiver: Implementation and Performance Evaluation

  • Lee, Geon-Woo;Choi, Jin-Kyu;Shin, Dong-Ho;Kim, Young-Il;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.353-357
    • /
    • 2006
  • One-sided and two-sided ATF for GNSS receiver are deigned, implemented and evaluated in this paper. The difference f filter characteristics such as the location of zeros and the frequency response is reviewed and examined with experiments. NLMS adaptation algorithm is adopted for updating the weighting coefficients of the 12-tap FIR filter. he performance of ATF is evaluated using real signals consisting of the signals from GPS simulator and the signal generator. The output of ATF is fed into the SDR to evaluate SNR and the position accuracy. The complexity of implementation is also compared and the effects of the time delay and the phase delay are examined. The experimental results show that one-sided and two-sided ATF give similar performance against single tone CWI.

  • PDF

A Novel Transmitter and Receiver Design of CDSK-Based Chaos Communication System (CDSK 방식의 카오스 통신 시스템의 새로운 송·수신기 설계)

  • Lee, Jun-Hyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.987-993
    • /
    • 2013
  • Chaos communication system has characteristics of non-periodic, non-predictability, broadband signal and easy implementation. Also, chaos communication system is sensitive to the initial value, because completely another signal is generated when initial value of chaos equation is changed subtly. By these characteristics, security of chaos communication system is generally evaluated better than other digital communication systems. However, BER(Bit Error Rate) performance is worse than other digital communication systems, because transmitter and receiver of existing chaos communication system are strongly influenced by reference signal and noise. So, studies in order to improve the BER performance of chaos communication system is continuously performed. In this paper, We will propose a new CDSK (Correlation Delay Shift Keying) receiver in order to improve the BER performance. After we compare to the performance of existing receiver and proposed receiver, BER performance of proposed receiver evaluate. A novel receiver has characteristic that BER performance is better than existing receiver. However, if existing transmitter is used, existing receiver is possible to recover information bits even though BER performance is bad. Therefore, we propose a novel CDSK transmitter in order to improve the security of proposed receiver. When information bits are transmitted by using proposed transmitter, existing receiver is impossible to recover information bits, and proposed receiver is possible to recover information bits.

Implementation of Compressive Receiver with Chirp LO Based on DDS for RFID Signal Detection (DDS 기반의 Chirp LO가 적용된 RFID 신호 탐지용 컴프레시브 수신기의 구현)

  • Jo, Won-Sang;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1186-1193
    • /
    • 2009
  • In this paper, we propose DDS(Direct Digital Synthesizer) as a new implementation method of chirp LO(Local Oscillator) for compressive receiver applied for RFID signal detection in UHF band. We designed a receiver whose input frequency range is 908.5~914 MHz, DDL(Dispersive Delay Line) bandwidth is 6 MHz, and dispersion delay time is $13\;{\mu}s$. Chirp LO based on DDS is designed to meet $26\;{\mu}s$ sweep time and 12 MHz bandwidth for complete compressive mechanism. The measured 3 dB pulse width of the compressed signal of the fabricated receiver is 260 ns and the frequency resolution for simultaneous input signals is below 200 kHz. These performances indicate that the proposed chirp LO based on DDS and the compressive receiver is suitable for RFID signal detection in UHF band.

The Circuit Design and Analysis of the Digital Delay-Lock Loop in GPS Receiver System (GPS 수신 시스템에서 디지탈 지연동기 루프 회로 설계 및 분석)

  • 금홍식;정은택;이상곤;권태환;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1464-1474
    • /
    • 1994
  • GPS(Global Positioning System)is a satellite-based navigation system that we can survey where we are, anywhere and anytime. In this paper, delay-lock loop of the receiver which detects the navigation data is theoretically analyzed, and designed using the digital logic circuit. Also logic operations for the synchronization are analyzed. The designed system consists of the correlator which correlates the received C/A code and the generated C/A code in the receiver, the C/A code generator which generates C/A code of selected satellite, and the direct digital clock syntheizer which generates the clock of the C/A code generator to control the C/A code phase and clock rate. From the analyses results of the proposed digital delay-lock loop system, the system has the detection propertied over 90% when its input signal power is above-113.98dB. The influence of input signal variation of digital delay loop, which is the input of A/D converter, is investigated and the performance is analyzed with the variation of threshold level via the computer simulation. The logic simulation results show that the designed system detects precisely the GPS navigation data.

  • PDF

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.