Shim, Jee-Seon;Kim, Ki Nam;Lee, Jung-sug;Yoon, Mi Ock;Lee, Hyun Sook
Nutrition Research and Practice
/
v.16
no.5
/
pp.616-627
/
2022
BACKGROUND/OBJECTIVES: Vitamin E is essential for health, and although vitamin E deficiency seems rare in humans, studies on estimates of dietary intake are lacking. This study aimed to estimate dietary vitamin E intake, evaluate dietary adequacy of vitamin E, and detail major food sources of vitamin E in the Korean population. SUBJECTS/METHODS: This study used data from the Korea National Health and Nutrition Examination Survey (KNHANES) 2016-2019. Individuals aged ≥ 1 year that participated in a nutrition survey (n = 28,418) were included. Dietary intake was assessed by 24-h recall and individual dietary vitamin E intake was estimated using a newly established vitamin E database. Dietary adequacy was evaluated by comparing dietary intake with adequate intake (AI) as defined by Korean Dietary Reference Intakes 2020. RESULTS: For all study subjects, mean daily total vitamin E intake was 7.00 mg α-tocopherol equivalents, which was 61.6% of AI. The proportion of individuals that consumed vitamin E at above the AI was 12.9%. Inadequate intake was observed more in females, older individuals, rural residents, and those with a low income. Mean daily intakes of tocopherol (α-, β-, γ-, and δ-forms) and tocotrienol were 6.02, 0.30, 6.19, 1.63, and 1.61 mg, respectively. The major food groups that contributed to total dietary vitamin E intake were grains (22.3%), seasonings (17.0%), vegetables (15.3%), and fish, and shellfish (7.4%). The top 5 individual food items that contributed to total vitamin E intake were baechu kimchi, red pepper powder, eggs, soybean oil, and rice. CONCLUSIONS: This study shows that mean dietary vitamin E intake by Koreans did not meet the reference adequate intake value. To better understand the status of vitamin E intake, further research is needed that considers intake from dietary supplements.
Jee-Seon Shim;Ki Nam Kim;Jung-Sug Lee;Mi Ock Yoon;Hyun Sook Lee
Nutrition Research and Practice
/
v.17
no.1
/
pp.48-61
/
2023
BACKGROUND/OBJECTIVES: Magnesium is an essential nutrient for human health. However, inadequate intake is commonly reported worldwide. Along with reduced consumption of vegetables and fruits and increased consumption of refined or processed foods, inadequate magnesium intake is increasingly reported as a serious problem. This study aimed to assess magnesium intake, its dietary sources, and the adequacy of magnesium intake in Korean populations. SUBJECTS/METHODS: Data was obtained from the Korea National Health and Nutrition Examination Survey 2016-2019 and included individuals aged ≥1 yr who had participated in a nutrition survey (n=28,418). Dietary intake was assessed by 24-h recall, and dietary magnesium intake was estimated using a newly established magnesium database. Diet adequacy was evaluated by comparing dietary intake with the estimated average requirement (EAR) suggested in the Korean Dietary Reference Intakes 2020. RESULTS: The mean dietary magnesium intake of Koreans aged ≥1 yr was 300.4 mg/d, which was equivalent to 119.8% of the EAR. The prevalence of individuals whose magnesium intake met the EAR was 56.8%. Inadequate intake was observed more in females, adolescents and young adults aged 12-29 yrs, elders aged ≥65 yrs, and individuals with low income. About four-fifths of the daily magnesium came from plant-based foods, and the major food groups contributing to magnesium intake were grains (28.3%), vegetables (17.6%), and meats (8.4%). The top 5 individual foods that contributed to magnesium intake were rice, Baechu (Korean cabbage) kimchi, tofu, pork, and milk. However, the contribution of plant foods and individual contributing food items differed slightly by sex and age groups. CONCLUSIONS: This study found that the mean dietary magnesium intake among Koreans was above the recommended intake, whereas nearly one in 2 Koreans had inadequate magnesium intake. To better understand the status of magnesium intake, further research is required, which includes the intake of dietary supplements.
Rini, Widyaningrum;Ika, Candradewi;Nur Rahman Ahmad Seno, Aji;Rona, Aulianisa
Imaging Science in Dentistry
/
v.52
no.4
/
pp.383-391
/
2022
Purpose: Periodontitis, the most prevalent chronic inflammatory condition affecting teeth-supporting tissues, is diagnosed and classified through clinical and radiographic examinations. The staging of periodontitis using panoramic radiographs provides information for designing computer-assisted diagnostic systems. Performing image segmentation in periodontitis is required for image processing in diagnostic applications. This study evaluated image segmentation for periodontitis staging based on deep learning approaches. Materials and Methods: Multi-Label U-Net and Mask R-CNN models were compared for image segmentation to detect periodontitis using 100 digital panoramic radiographs. Normal conditions and 4 stages of periodontitis were annotated on these panoramic radiographs. A total of 1100 original and augmented images were then randomly divided into a training (75%) dataset to produce segmentation models and a testing (25%) dataset to determine the evaluation metrics of the segmentation models. Results: The performance of the segmentation models against the radiographic diagnosis of periodontitis conducted by a dentist was described by evaluation metrics(i.e., dice coefficient and intersection-over-union [IoU] score). MultiLabel U-Net achieved a dice coefficient of 0.96 and an IoU score of 0.97. Meanwhile, Mask R-CNN attained a dice coefficient of 0.87 and an IoU score of 0.74. U-Net showed the characteristic of semantic segmentation, and Mask R-CNN performed instance segmentation with accuracy, precision, recall, and F1-score values of 95%, 85.6%, 88.2%, and 86.6%, respectively. Conclusion: Multi-Label U-Net produced superior image segmentation to that of Mask R-CNN. The authors recommend integrating it with other techniques to develop hybrid models for automatic periodontitis detection.
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.17-25
/
2023
The alarming global prevalence of Type 2 Diabetes Mellitus (T2DM) has catalyzed an urgent need for robust, early diagnostic methodologies. This study unveils a pioneering approach to predicting T2DM, employing the Extreme Gradient Boosting (XGBoost) algorithm, renowned for its predictive accuracy and computational efficiency. The investigation harnesses a meticulously curated dataset of 4303 samples, extracted from a comprehensive Chinese research study, scrupulously aligned with the World Health Organization's indicators and standards. The dataset encapsulates a multifaceted spectrum of clinical, demographic, and lifestyle attributes. Through an intricate process of hyperparameter optimization, the XGBoost model exhibited an unparalleled best score, elucidating a distinctive combination of parameters such as a learning rate of 0.1, max depth of 3, 150 estimators, and specific colsample strategies. The model's validation accuracy of 0.957, coupled with a sensitivity of 0.9898 and specificity of 0.8897, underlines its robustness in classifying T2DM. A detailed analysis of the confusion matrix further substantiated the model's diagnostic prowess, with an F1-score of 0.9308, illustrating its balanced performance in true positive and negative classifications. The precision and recall metrics provided nuanced insights into the model's ability to minimize false predictions, thereby enhancing its clinical applicability. The research findings not only underline the remarkable efficacy of XGBoost in T2DM prediction but also contribute to the burgeoning field of machine learning applications in personalized healthcare. By elucidating a novel paradigm that accentuates the synergistic integration of multifaceted clinical parameters, this study fosters a promising avenue for precise early detection, risk stratification, and patient-centric intervention in diabetes care. The research serves as a beacon, inspiring further exploration and innovation in leveraging advanced analytical techniques for transformative impacts on predictive diagnostics and chronic disease management.
Jee-Seon Shim;Ki Nam Kim;Jung-Sug Lee;Mi Ock Yoon;Hyun Sook Lee
Nutrition Research and Practice
/
v.17
no.2
/
pp.257-268
/
2023
BACKGROUND/OBJECTIVES: Zinc is an essential trace mineral which is important for the growth and development of the human body and immunological and neurological functions. Inadequate zinc intake may cause zinc deficiency with its adverse consequences. In this study, we aimed to estimate the dietary zinc intake levels and sources among Koreans. SUBJECTS/METHODS: For this secondary analysis, we obtained data from the Korea National Health and Nutrition Examination Survey (KNHANES) 2016-2019. Individuals aged ≥ 1 yr who had completed a 24-h recall were included. The dietary zinc intake of each individual was calculated by applying data from a newly developed zinc content database to the KNHANES raw data. We also compared the extracted data with the sex-, age-specific reference values suggested in the Korean Dietary Reference Intakes 2020. The prevalence of adequate zinc intake was then evaluated by the proportion of the individuals who met the estimated average requirement (EAR). RESULTS: The mean zinc intake of Koreans aged ≥ 1 yr and adults aged ≥ 19 yrs were 10.2 and 10.4 mg/day, equivalent to 147.4% and 140.8% of the EAR, respectively. Approximately 2 in 3 Koreans met the EAR for zinc, but the zinc intake differed slightly among the different age and sex groups. In children aged 1-2 yrs, 2 out of 5 exceeded the upper level of intake, and nearly half of the younger adults (19-29 yrs) and the elders (≥ 75 yrs) did not meet the EAR. The major contributing food groups were grains (38.9%), meats (20.4%), and vegetables (11.1%). The top 5 food contributors to zinc intake were rice, beef, pork, egg, and baechu kimchi, which accounted for half of the dietary intake. CONCLUSION: The mean zinc intake among Koreans was above the recommended level, but 1 in 3 Koreans had inadequate zinc intake and some children were at risk of excessive zinc intake. Our study included zinc intake from diet only, thus to better understand zinc status, further research to include intake from dietary supplements is needed.
BACKGROUND/OBJECTIVES: Previous studies have shown an association between breastfeeding and higher fruit and vegetable consumption and the level of dietary variety in children. However, few studies have reported this association on the feeding characteristics. Therefore, this study examined the association of the feeding characteristics with the consumption of fruit and vegetable and dietary variety in children. SUBJECTS/METHODS: This study recruited 802 participants from their parents with information on their feeding, and 24-h dietary recall. The associations of the feeding characteristics with fruit and vegetable consumption and dietary variety score (DVS) were analyzed using a multiple logistic regression model. RESULTS: Compared to the feeding type of exclusive breastfed children, exclusive formula-fed children had a significant association with a lower DVS (odds ratio [OR], 0.42, 95% confidence interval [CI], 0.23-0.77). Fruit and vegetable consumption was classified into 6 groups: non-salted vegetables (NSV), salted vegetables (SV), fruit (F), total vegetables (TV), non-salted vegetables + fruit (NSVF), and total vegetables + fruit (TVF). According to the mean level of fruit and vegetable consumption, compared to the duration of total breastfeeding for 6 month or less, a greater duration of breastfeeding for 12 mon had a significant association with a higher intake of NSVF and TVF (OR, 1.85, 95% CI, 1.20-2.85 and OR, 1.89, 95% CI, 1.22-2.92). On the other hand, the early introduction of formula feeding for 4 mon had a significant association with a lower intake of F and NSVF (OR, 0.59, 95% CI, 0.38-0.91 and OR, 0.63, 95% CI, 0.40-0.99). CONCLUSIONS: These results confirm that breastfeeding is associated with higher fruit and vegetable consumption and dietary variety, whereas formula feeding is associated with lower fruit and vegetable consumption and dietary variety. Therefore, the feeding characteristics in infants may affect fruit and vegetable consumption and dietary variety in children.
Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
International Journal of Computer Science & Network Security
/
v.23
no.3
/
pp.49-56
/
2023
Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.
Journal of Korea Entertainment Industry Association
/
v.13
no.8
/
pp.69-76
/
2019
Backed by the fourth industrial revolution as the background of the research, VR, AR and MR have increased interest and wireless Oculus Quest is releasing, creating hardware recall and continuing virtual reality devices, and game software develop or service VR games using such devices. As a result, it is expected that VR game markets will continue to grow in the future. For this purpose, we understand the technical factors of presence and immersion that appear in virtual reality games and should be able to apply them when we produce VR games. Through the process, we analyzed elements of VR game concept, immersion, and presence and analyzed three games that were commercialized. As a suggestion, we need to take into account presence and immersion characteristics when developing and experiencing virtual reality games in the future.
KIPS Transactions on Software and Data Engineering
/
v.11
no.6
/
pp.245-254
/
2022
Proteins are the basic unit of all life activities, and understanding them is essential for studying life phenomena. Since the emergence of the machine learning methodology using artificial neural networks, many researchers have tried to predict the function of proteins using only protein sequences. Many combinations of deep learning models have been reported to academia, but the methods are different and there is no formal methodology, and they are tailored to different data, so there has never been a direct comparative analysis of which algorithms are more suitable for handling protein data. In this paper, the single model performance of each algorithm was compared and evaluated based on accuracy and speed by applying the same data to CNN, LSTM, and GRU models, which are the most frequently used representative algorithms in the convergence research field of predicting protein functions, and the final evaluation scale is presented as Micro Precision, Recall, and F1-score. The combined models CNN-LSTM and CNN-GRU models also were evaluated in the same way. Through this study, it was confirmed that the performance of LSTM as a single model is good in simple classification problems, overlapping CNN was suitable as a single model in complex classification problems, and the CNN-LSTM was relatively better as a combination model.
This study aims to estimate roadkill occurrences and investigate influential factors in Chungcheongnam-do, contributing to the establishment of roadkill prevention measures. By comprehensively considering weather, road, and environmental information, machine learning was utilized to estimate roadkill incidents and analyze the importance of each variable, deriving primary influencing factors. The Gradient Boosting Machine (GBM) exhibited the best performance, achieving an accuracy of 92.0%, a recall of 84.6%, an F1-score of 89.2%, and an AUC of 0.907. The key factors affecting roadkill included average local atmospheric pressure (hPa), average ground temperature (℃), month, average dew point temperature (℃), presence of median barriers, and average wind speed (m/s). These findings are anticipated to contribute to roadkill prevention strategies and enhance traffic safety, playing a crucial role in maintaining a balance between ecosystems and road development.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.