• Title/Summary/Keyword: Rebound test

Search Result 150, Processing Time 0.039 seconds

Strength Prediction Equations of High Strength Concrete by Schmidt Hammer Test (슈미트 해머 시험법에 의한 고강도 콘크리트의 강도 추정식)

  • Park Song Chul;Yoo Jae Eun;Kim Min Su;Kwon Young Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.615-618
    • /
    • 2005
  • This study concerns the equation of high strength concrete by schmidt hammer test. There are not only few prediction strength equations of concrete by schmidt hammer test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of schmidt hammer test with in existing 1,095days' concrete structures and proposed equations as follows ; Linear: ${\Large f}_{ck}=-45.35+2.44R(r^2=72.7\%)$ Quadratic: ${\Large f}_{ck}=-502.08+24.0R-0.25R^2(r^2=82.4\%)$ here, $f_{ck}$ : Estimated compressive strength of concrete by MPa, R : Rebound index of concrete

  • PDF

A New Strength Equation of Concrete by Schmidt Hammer Test (슈미트햄머 시험법에 의한 콘크리트 강도 추정식)

  • Park Song-chul;Yoo Jae-Eun;Kim Min-Su;Kwon Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.133-136
    • /
    • 2004
  • This study concerns the. new equation of concrete strength by schmidt hammer test. There are not only few estimate strength equations of concrete by schmidt hammer test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of schmidt hammer test with in existing 730days' concrete structures and proposed equations as follows; $$Linear\;:\;f_{ck}=2.18R-40.54\;(r^2=77.7\%)$$ $$Quadratic\;:\;f_{ck}=0.076R^2-2.92R+40.04\;(R^2= 85.5\%)$$ here, fck : Estimated compressive strength of concrete by MPa, R : Rebound index of concrete.

  • PDF

Estimation of Compressive Strength for Existing Concrete Structures by Non-Destructive Tests (비파괴시험에 의한 기존 콘크리트 구조물의 압축강도 추정)

  • 구봉근;오병환;김영의;김태봉;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.159-172
    • /
    • 1994
  • The relmund hammer test and ultrasonic pulse velocity test methods are commonly used to determine the in-situ compressive strength of concrete. One of the special feature of these methods is that they cannot give consistent and reliable results for variety of structures. In particular, very old existing structures have been generally received sreious environmental affectsand thus the strength prediction will be different from normal structures. The purpose of the present study is, therefore, to propose realistic equations to predict the in-situ strengths of actual old concrete structures. The rebound hammer and ultrasonic pulse velocity tests, carbonation depth measurments and core compressive strength measurements have been carried out for very old hydraulic and seacoast concrete structures spanning from one to about seventy years in age. From these test results, the strength-rebound number relations, the strength-pluse velocity relatinns and the strength-rebound number-pluse velocity relations have been obtained through multiple regression analysis. The present study indicates that the existing equations by nondestructive tests give quite different results from the present data. The proposed equations reasonably well predict the measured data for old concrete structures, especially for low strength concrete. The prediction equations proposed here can be efficiently used in determining the in-situ strength of old concrete structures.

Reliability Evaluation of Compressive Strength of Reinforced Concrete Members (철근 콘크리트 구조 부재의 압축강도 추정 신뢰도 평가)

  • Hong, Seong-Uk;Park, Chan-Woo;Lee, Yong-Taeg;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.132-140
    • /
    • 2019
  • In this study, a specimen composed of columns, walls, beams, and slabs was fabricated to investigate the estimated reliability using nondestructive test method for the location of structural members of reinforced concrete single layer structures. And for accurate analysis in the comparison process with the existing estimation formula, we try to analyze the reliability through statistical approach by using error rate comparison and Confidence interval estimation. As a result, The average error rate of the core test was 18.8% compared with the result of estimating the compressive strength using the ultrasonic pulse velocity method. The average error rate of the core test results compared with the result of estimating the compressive strength using the rebound hardness method was 20.1%, confirming the field applicability. it is judged that the reliability of the compressive strength estimation can be derived from the wall member to make a quick and efficient structure safety diagnosis using the ultrasonic pulse velocity method. In addition, it is judged that the reliability of the compressive strength estimation can be derived from the beam member to make a quick and efficient structure safety diagnosis using the rebound hardness method.

A fundamental study on the field applicability of the improved shape steel fiber shotcrete (형상을 개선한 강섬유보강 숏크리트의 현장 적용성에 관한 기초적 연구)

  • Kim, Sang-Hwan;Heo, Chung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • This paper presents the fundamental study on the field applicability of new-type steel fiber improved the existing shape. In this study, the theoretical reviews and the laboratory test programs were carried out to evaluate the mechanical characteristic of the new-type of steel fiber. The steel fiber sticking coefficient of new-type steel fiber was estimated from the test results. The laboratory scaled shotcrete rebound tests were also performed to analysis the field applicability of New-type steel fiber shotcrete and the mechanical behaviour of New-type steel fiber shotcrete were compared with that of the existing steel fiber shotcrete. It was found that the strength characteristic of New-type steel fiber shotcrete was increased.

A Study on the Characteristics of Nondestuctive Tests Including Pullout Test (인발법을 포함한 비파괴시험법에 대한 특성 비교)

  • 고훈범;정성원;음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.211-215
    • /
    • 1996
  • This paper presents comparisons of pullout load of concrete with compressive strength of cylinders and cores, pulse velocity, and rebound number. A pullout test, which is a relatively new nondestructive technique, measures with a special tension ram the force required to pullout a specially shaped steel rod whose enlarged end has been cast into a concrete block. In this study 3 concrete mixes(normal strength, high-strength & super-high-strength) were made. From each mix, one 100$\times$70$\times$20 concrete block, 24 cylinders$(\phi10mm)$were casted. Each tests were performed on the concrete blocks at 3, 7, 28, and 91days. The test data shows that the pullout test is superior to the rebond hammer and the pulse velocity measurements on the evaluation of concrete strength. The pullout test is satisfactory for estimating the strength of in situ concrete at both early and late age, and its results can be reproduced with an acceptable degree of accuracy.

  • PDF

Development of Eco-friendly Woven Floor Mat with High Resilience II - Characterization of TPU Coating Yarn and Floor Mat - (고탄성 특성을 보유한 친환경 우븐 바닥재에 관한 연구(II) - TPU 코팅사 및 바닥재의 특성-)

  • Lee, Sun-Hee
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.635-640
    • /
    • 2012
  • In this study, thermoplastic urethane (TPU) coating yarns were prepared at various extruding temperatures. The fine structure and mechanical properties of resultant TPU coating yarns examined by the wide angle X-ray diffractometer (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile test. TPU coating yarns (prepared at extruding temperatures at $175^{\circ}C$) were confirmed as a stable fine structure that obtained excellent tensile strength and flexibility. The C samples prepared by optimized conditions made by TPU woven floor mat. The structure of the woven mat is $4{\times}4$ basket weave and have laminated with the EVA foam to obtained final TPU woven floor mat products. The resultant TPU woven floor mat was obtained to 1.5MN of tensile strength, 22% of the elongation, and 0.2MN of tear strength. The weight loss abrasion and the resilience by the ball rebound of the TPU-woven floor mat was prior to those of the PVC subsequently, we were able to develop a woven floor mat with TPU coating yarn and produce an eco-friendly high valuable woven floor mat using an interior product.

Experimental Study on the Damage of Concrete Material by Impact Load (충격 하중에 의한 콘크리트 재료의 손상에 관한 실험적 연구)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • Although the number of blasting operations in urban area are growing, lesser attentions have been paid to the effects of impact load on nearby concrete structures. In this study, the properties of concrete were obtained by both the sonic velocity and Schmidt rebound tests, and the degree of damage in concrete material was evaluated by measuring the sonic velocity in sample before and after applying the impact load. The test results shows that the sonic velocity decreases with the increase of intensity of impact load, and the degree of damage in concrete samples is lower when the samples have higher strength and sonic velocity.

Determination of concrete quality with destructive and non-destructive methods

  • Kibar, Hakan;Ozturk, Turgut
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.473-484
    • /
    • 2015
  • In this study, the availability of Schmidt hammer has been investigated as a reliable method to determine the quality of concrete in irrigation networks. For this purpose, the 28-day compressive strength of concrete material used in the construction irrigation channel of Bafra lowland, which is one of the most fertile plains in Turkey was examined by means of concrete compression and as well as concrete Schmidt hammer in laboratory conditions. This study was carried out on cylindrical samples to represent the everyday concrete party ($150m^3$) produced by contractor firm as 3 replications. The statistical analysis of experimental data showed that the correlations between the values of 28-day compressive strength of Schmidt hammer and the rebound number was found to be 0.98. Differences of the compressive strength between compression testing and Schmidt hammer were statistically significant at P<0.01. In this context, it was found that the reliability of compressive strength of the concrete compression test are excellent, also the reliability of compressive strength of Schmidt hammer are fair in assessing the quality of concrete irrigation channels.

Evaluation of Non-destructive Test Results for Existing Concrete Bridges in Korea (노후화된 국내 콘크리트 교량에 적합한 비파괴 시험 결과의 평가)

  • 이학은;윤영수;백영인;이병철;김영민;정우용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.385-390
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength to fit the old concrete bridges in Korea.

  • PDF