• Title/Summary/Keyword: Reattachment

Search Result 310, Processing Time 0.029 seconds

Calculation of Turbulent Offset Jet (난류 Offset 분류에 관한 수치해석)

  • Lee, Woo-Jung;Kim, Kwang-Yong;Cho, Yong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1991
  • The paper discusses the problem of the flow over the backward facing step and the offset jet, which are calculated numerically. Standard k- .epsilon. model and its LPS modification are used as turbulence models. Hybrid central/upwind scheme and skew- upwind scheme are used as numerical schemes. The numerical scheme has a strong influence on the offset jet rather than the flow over backward facing step. The skew-upwind scheme gives good results in both cases. However, the k- .epsilon. model with LPS modification yields no remarkable improvements in the predictions of both flows. The skew-upwind scheme improves the prediction of reattachment length in the offset jet.

  • PDF

A Study on the Vortex Generators of Plastic Plate Heat Exchangers (플라스틱 판형 열교환기의 와류발생기에 관한 연구)

  • Oh Yunyoung;Yoo Seongyeon;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.107-110
    • /
    • 2002
  • The present study deals with CFD analysis of 'The vortex generators on plastic plate heat exchanger'. When a vortex generator is placed on the heat transfer surface, the flow gets more complex because it entails complicated three-dimensional flows such as separation, reattachment, and recirculation. CFX-5.4, a commercial code utilizing unstructured mesh, has been used as a computational method for solving RANS(Reynolds-Averaged Wavier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. In addition, those computational analyses were implemented under various conditions , with or without the vortex generator between two plates, the number, form and the size of vortex generator, and different attack of angle. From the calculated temperature, velocity and pressure distribution, vorticity, wall heat flux and so on under those conditions, this study shows the effect of vortex on heat transfer.

  • PDF

Numerical Simulation of the Aeroacoustic Noise in the Separated Laminar Boundary Layer

  • Park, Hyo-Won;Young J. Moon;Lee, Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • The unsteady flow characteristics and the related noise of separated incompressible laminar boundary layer flows (Re$\sub$$\delta$/* = 614, 868, and 1,063) are numerically investigated. The characteristic lines of the wall pressure are examined to identify the primary noise source, related with the unsteady motion of the vortex at the reattachment point of the separation bubble. The generation and propagation of the vortex-induced noise in the separated laminar boundary layer are computed by the method of Computational Aero-Acoustics (CAA), and the effects of Reynolds number, Mach number and adverse pressure gradient strength are examined.

Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model (Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사)

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

Aeroacoustic Noise Generation in Unsteady Laminar Boundary-layer Separation (비정상 층류 경계층 박리에 의한 유동 소음)

  • Choi, Hyo-Won;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.300-305
    • /
    • 2001
  • The unsteady flow structure and the related noise generation, which are caused by the separation of a two-dimensional, incompressible, laminar boundary-layer on the flat plate under the influence of local adverse pressure gradient, are numerically examined. The characteristic lines of the wall pressure are examined to understand the unsteady behavior of vortex shedding near the reattachment point of the separation bubble. Also, the generation and propagation of the vortex-induced noise in the separated boundary-layer are calculated by the method of computational aero-acoustics (CAA), and the effects of Reynolds number, Mach number and the strength of the adverse pressure gradient on the unsteady flow and noise characteristics are examined.

  • PDF

Flow Analysis of the Modified Power-Law Non-Newtonian Fluids in the Stenotic Tubes (수정멱법칙 비뉴턴유체의 협착관내 유동장해석)

  • Sub, S.H.;Yoo, S.S.;Chang, N.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-236
    • /
    • 1994
  • Steady flows of Newtonian and non-Newtonian fluids in the stenotic tubes with various stenotic shapes are numerically simulated. Validity of the modified power-law model as a constitutive equation for the purely viscous non-Newtonian fluid is discussed and the results of the power-law model are compared with those of the Carreau model, the Powell-Eyring model and experimental data for blood. Flow characteristics and reattachment lengths for non-Newtonian fluids in the stenotic tubes are presented extensively. Also, the analysis is extended to predict the influences of diameter ratio, stenosis spacing, number of stenosis and Reynolds number on the flow characteristics in the multiple stenotic tubes.

  • PDF

Perturbation Analysis of Stokes Flow in Porous Medium (다공성 매질의 내부유동에 관한 섭동해석)

  • Seong, Kwanjae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2005
  • In this study, flow in a porous medium is analyzed using a computer-extended perturbation series solution. The flow is modelled as a creeping flow in a periodically constricted channel. The channel walls have a sinusoidally varying width and the flow is analyzed in terms of its vorticity and stream functions in the Stokes flow regime. The perturbation series in terms of a small parameter, average width to length ratio, is extended with a computer resulting in purely asymptotic series and Pade summation is used to obtain final results. Resulting flow shows flow separations in the widening section and immobile zones in the widest section of the flow regime with reattachment in the narrowing section. Analysis of the flow separation phenomena resulted in a correlation between the two geometric parameters of the channel walls to predict the onset of flow separation in the Stokes flow regime.

ANALYSIS ON THE DYNAMIC STALL OVER AN OSCILLATING AIRFOIL USING TRANSITION TRANSPORT EQUATIONS (천이 전달 방정식을 이용한 진동하는 익형의 동적 실속의 해석)

  • Jeon, S.E.;Sa, J.H.;Park, S.H.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Numerical investigation on the dynamic stall over an oscillating airfoil is presented. A Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with transition transport equations for the natural transition. Computational results considering the turbulent transition are compared with the fully turbulent computations and the experimental data. Results with transition prediction show closer correlation with the experimental data than those with the fully turbulent assumption, especially in the reattachment region.

Optimization study of pulsating jet for reducing the separation bubble behind the vertical fence (수직벽 후방박리영역 감소를 위한 맥동제트의 최적화 연구)

  • Choi, Young-Ho;Kang, In-Su;Kim, Hyoung-Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.185-188
    • /
    • 2008
  • In this study, we experimentally investigated that the optimization of pulsating jet to reduce the separated flow region behind the vertical fence. The vertical fence was submerged in the turbulent boundary layer in the circulating water channel and we applied phase averaged PIV method to measure the instantaneous velocity fields around the fence. One cycle of pulsating jet is divided into 20 phases and grabbed total 200 instantaneous velocity fields at each phase. The experiments were performed by varying the frequency, maximum jet velocity and the shape of pulsating jet wave. Pulsating jet was precisely made by piston-type pump controlled by the computer. The obtained results were compared with normal fence flow. From this study, we found there is the specific frequency which is effective in reducing the reattachment region.

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.