• Title/Summary/Keyword: Rearranging Frames

Search Result 2, Processing Time 0.016 seconds

Frame Rearrangement Method by Time Information Remarked on Recovered Image (복원된 영상에 표기된 시간 정보에 의한 프레임 재정렬 기법)

  • Kim, Yong Jin;Lee, Jung Hwan;Byun, Jun Seok;Park, Nam In
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1641-1652
    • /
    • 2021
  • To analyze the crime scene, the role of digital evidence such as CCTV and black box is very important. Such digital evidence is often damaged due to device defects or intentional deletion. In this case, the deleted video can be restored by well-known techniques like the frame-based recovery method. Especially, the data such as the video can be generally fragmented and saved in the case of the memory used almost fully. If the fragmented video were recovered in units of images, the sequence of the recovered images may not be continuous. In this paper, we proposed a new video restoration method to match the sequence of recovered images. First, the images are recovered through a frame-based recovery technique. Then, after analyzing the time information marked on the images, the time information was extracted and recognized via optical character recognition (OCR). Finally, the recovered images are rearranged based on the time information obtained by OCR. For performance evaluation, we evaluate the recovery rate of our proposed video restoration method. As a result, it was shown that the recovery rate for the fragmented video was recovered from a minimum of about 47% to a maximum of 98%.

Computational Approach for the Trade-Off Study between the Total Cost and the Member Connections in Steel Frames (강 뼈대구조물의 총 경비와 부재연결과의 상반관계에 관한 연구)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Over the past decade, labor costs have increased relative to the cost of material hardware according to analysts in the construction industry. Therefore, the minimum weight design, which has been widely adopted in the literature for the optimal design of steel structures, is no longer the most economical construction approach. Presently, although connection- related costs is crucial in determining the most cost-effective steel structures, most studies on this subject focused on minimum-weight design or engaged in higher analysis. Therefore, in this study, we proposed a fabrication scheme for the most cost-effective moment-resisting steel frame structures that resist lateral loads without compromising overall stability. The proposed approach considers the cost of steel products, fabrication, and connections within the design process. The optimal design considered construction realities, with the optimal trade-off between the number of moment connections and total cost was achieved by reducing the number of moment connections and rearranging them using the combination of analysis that includes shear, displacement and interaction value based on the LRFD code and optimization scheme based on genetic algorithms. In this study, we have shown the applicability and efficiency in the examples that considered actual loading conditions.