• 제목/요약/키워드: Rear seat noise

검색결과 5건 처리시간 0.017초

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

민감도 해석 및 구조 변경법을 이용한 차실 소음 저감 (Interior Noise Reduction Using Sensitivity Analysis and Structural Dynamic Modification)

  • 황우석
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1145-1151
    • /
    • 1999
  • Sensitivity analysis and structural modification technique are used to reduce the interior noise of a passenger car. The sensitivity analysis for the noise level at the rear seat shows that the stiffness change at the front lower member and the rear roof rail are sensitive. Using the structural modification method, we verified that the reinforcements at those members decrease the noise transfer function from the body to the rear seat. The combined application of the sensitivity analysis and structural modification method can decrease the noise level effectively.

  • PDF

파워기반 소음감소 기법을 이용한 준중형 해치백 후석 고주파성 로드노이즈 전달특성 연구 (A study on the characteristics of high frequency road noise transmission at the rear seat of a hatch back compact car using PBNR (Power Based Noise Reduction) method)

  • 이종현;조세현;이주완;이철현;양정민
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.248-255
    • /
    • 2018
  • 세단 타입에 비해 해치백 타입의 차량은 실링구조 확보에 어려움이 있기 때문에 후석에서 느껴지는 차폐성능이 열세한 것으로 알려져 있다. 차량의 차폐감 확보를 위해 강건한 실링 시스템과 충분한 흡음/차음 성능이 요구되지만 준중형 이하 세그먼트에서는 원가, 중량의 제약으로 인해 충분한 흡차음 사양 적용에 제한을 받고있어 효율적인 흡차음 사양의 적용이 요구되고 있는 실정이다. 본 연구에서는 정량적인 측정과 비교, 분석이 가능한 파워기반 소음감소(Power Based Noise Reduction, PBNR) 기반의 차음 윈도우 평가를 통해 준중형 해치백 차량의 후석 소음원의 전달 경로를 분석하고 후석 차폐성능 확보를 위한 흡차음 대안을 제시하였다.

다구찌 방법을 활용한 Rear Center-Hinge Bracket 강건 설계 (Robust Rear Center-Hinge Bracket Optimization Based on Taguchi Method)

  • 정세빈;김민호
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.203-209
    • /
    • 2014
  • The rear center-hinge bracket is designed for supporting and folding the rear-seat backrest. This bracket needs to be strong enough to be able to rigidly hold the rear-seat backrest and to withstand luggage loads from the car trunk that are generated when a vehicle is driving on the roads. Particularly, current accident studies report that many serious occupant injuries occurred when the rear-seat back easily folded inward toward the car interior, driven by the luggage loads in the trunk. Given this fact, the robust design of the rear center-hinge bracket that mainly supports the rear backrest has become more important for providing customer safety and preventing high warranty and durability problems. However, none of the studies have emphasized its significant role and considered its robust optimization. Therefore, this paper presents how the hinge-bracket design is optimized based on an application of the finite-element method coupled with the parameter design using Taguchi's design experiment. Finally, Taguchi method's application optimizes a robust center-hinge bracket that shows more rigid performance although it has lighter weight and thinner thickness.

인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험 (The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration)

  • 김진기;홍동표;최만용
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF