• Title/Summary/Keyword: Rear and Rear Side

Search Result 400, Processing Time 0.023 seconds

Multi Stage Simulations for Autobody Member Part (자동차 멤버 부품의 다공정 성형해석)

  • Park C.D.;Kim B.M.;Chung W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.281-288
    • /
    • 2006
  • Most of automobile member parts experience severe springback problems because of their complicated shape and high yielding strength. Now it becomes imperative to develop an effective method to resolve these problems. However, there remain several obstacles to get accurate estimation of dimensional shape. Especially the effective algorithms to simulate sheet metal forming processes including drawing, trimming, flanging and springback is demanded for the multi stage simulation of automobile member parts. In this study, for the purpose of accurate springback calculation, a simulation program which is robust in springback analysis is developed. Favorable enhancement in computation time for springback analysis by using latest equation solving technique and robust solution convergence by continuation method are achieved with the program. In analysis, the multi processes of rear side member are simulated to verify the system. For the evaluation of springback accuracy practically, all conditions including boundary conditions for springback analysis and inspection conditions for dimensional accuracy are applied. The springback results of simulations show good agreement with the experiments.

Flow Analysis near Shell Warhead (포탄의 탄두 주위에서의 유동해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.18-23
    • /
    • 2020
  • The maximum speed and pressure distribution close to a warhead are altered based on the warhead shape, thereby resulting in changes to the flight distance and the destructive power. In this study, flow analysis was carried out based on the warhead shell shape. The maximum flow rate was detected at the side of shell, with a lower flow rate being found at the rear of the shell. In addition, the maximum pressure was detected at the warhead. It was also found that the reduction in the flow rate between the rear and the side of the shell in model A was smaller than that in model B. The obtained results are expected to be useful in the future design of shell warhead shape.

A study on characteristics of overtopping rate with Berm's size at the low crest breakwater (저천단 방파제에서의 소단규모에 따른 월파특성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Wave overtopping is one of the most important hydraulic responses of breakwater because it significantly affects its functional efficiency, the safety of transit and mooring on the rear side, wave transmission in the sheltered area, rear side armor stones and to some extent, the structural safety itself. The hydrodynamic characteristics of low crest breakwater by the overtopping rate can be summarized as follows: 1. It is better to use maximum overtopping rate than to use mean overtopping rate for design of coastal structures. 2. Maximum overtopping rate was increase with wave steepness (between 0.01 and 0.02). 3. Overtopping rate is decreased when relation length of berm was over wave length.

  • PDF

Development of Manufacturing Processes of Crystalline Silicon Back Contact Solar Cells (후면전극형 실리콘 태양전지 제조기술 개발)

  • Kim Daewon;Lee Keonyoung;Cho Eunchel;Park Sangwook;Moon Insik;Lee Kyuyeol;Yu Jaehee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.89-93
    • /
    • 2005
  • A rear contact solar cell has a potential merit of efficiency improvement by a low shading loss in front surface. a simplified module assembly. and a higher packing density. Among the rear contact solar cells. MWT. metallizationl wrap through MWT solar cells that have the bus bars on the back side and the front side metallization is connected to the back through metal filled laser fired holes in the silicon wafer. This approach has the advantages of a much more uniform appearance. The first fabrication of MWT using a multicrystalline silicon modules in our group showed $12.28\%$ on $125mm{\times}125mm$ active area.

  • PDF

Effects of Rear-Foot Wedged Insoles on the Foot Pressure in Walking (발 뒤축 내·외측 경사진 안창이 족부압력에 미치는 영향)

  • Ryu, Taebeum;Chae, Byungkee;Lim, Wansoo;Choi, Hwa Soon;Chung, Min K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.90-97
    • /
    • 2008
  • Wedged insoles are frequently used to reduce the pains caused by the knee arthritis or the foot overuse syndrome. The present study analyzed the effect of wedged rear-foot insoles on the foot pressure in walking. Three medially wedged insoles with three angles (5, 8 and 15") and three laterally wedged insoles with the same angles were made, and a flat insole were prepared. Ten healthy males in twenties walked in a specified line with each insole. Center of pressure (COP), relative vertical force and maximum force on anatomical areas were analyzed from the measured foot pressure data. At heel contact, medially wedged insoles significantly increased the pressure of the medial foot side (COP moved medially by 2-5 mm and maximum pressure of 1st metatarsal head increased by 110-120% relative to the flat insole), In contrast, laterally wedged insoles significantly increased the lateral side pressure (COP moved laterally by 1-5 mm and the ratio of $2^{nd}$ metatarsal head pressure to $1^{st}$ metatarsal head increased by 0.5-2.0 relative to the flat insole). At toe off, both wedged insoles significantly increased the pressure of the medial foot side (COP moved medially by 0.5-10 mm and the ratio of $1^{st}$ metatarsal head pressure to $5^{th}$ metatarsal head increased by 2.0 relative to the flat insole). Especially, the laterally wedged insoles significantly increased the relative vertical force (6-12%) of the rear-foot more than the flat insole.

A Study on the Dynamic and Impact Analysis of Side Kick in Taekwondo (태권도 옆차기 동작의 동력학해석과 충격해석에 관한 연구)

  • Lee, Jung-Hyun;Han, Kyu-Hyun;Lee, Hyun-Seung;Lee, Eun-Yup;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Taekwondo is a martial art form and sport that uses the hands and foot for attack and defense. Taekwondo basic motion is composed of the breaking, competition and poomsea motion. In the side kick among the competition motion, the impact force is larger than other kinds of kicks. The side kick with the front foot can be made in two steps. In the first step, the front foot is stretched forward from back stance free-fighting position. For the second step, the rear foot is followed simultaneously. Then, the kick is executed while entire body weight rests on the rear foot. In this paper, impact analysis of the human model for hitting posture is carried out. The ADAMS/LifeMOD is used in hitting modeling and simulation. The simulation model creates the human model to hit the opponent. As the results, the dynamic analysis of human muscle were presented.

Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ) (용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ))

  • Shin, Dae Sig;Choi, Jayho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

Linearized Dynamic Analysis of a Four-Wheel Steering Vehicle (Bicycle 모델을 이용한 4륜 조향 차량의 동력학 해석)

  • Lee, Y.H.;Kim, S.I.;Suh, M.W.;Son, H.S.;Kim, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.101-109
    • /
    • 1994
  • Recently, four-wheel steering systems have been developed and studied as one of the latest automotive technologies for improving the handling characteristics of a vehicle. In much of the proposed four-wheel steering systems, the side slip angle at the vehicle's center of gravity is maintained at zero. This approach allows the greater maneuverability at low speed by means of counter-phase rear steering and the improved stability at high speed through same-phase rear steering. In this paper, the effects of several four-wheel steering systems are studied and discussed on the responsiveness and stability of the vehicle by using the linear analysis. Especially, the effects of the cornering stiffnesses of both front and rear wheels are investigated on the yaw velocity gain and critical speed of the vehicle.

  • PDF

Analysis of Thermo Environment Change by Introduction of Indoor Water Space (실내 수공간 도입에 따른 온열 환경 변화 분석)

  • Oh, Sang Mok;Oh, Se Gyu
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.53-60
    • /
    • 2012
  • This research is an illustrative research to verify the thermo environmental change created after introduction of indoor pond through abridged model test and simulation analysis. Especially, temperature and comfort level are analyzed by adjusting factors like size of water space, distance length, and location. Summary of the research is as follows. First, the most effective size of water space is 7% of the indoor size, from southern side. Temperature reduction effect is about $1.6^{\circ}C$(5.5%), and for the comfort level, it is found that pmv index increases 8%. Second, based on the simulation of distance length with the sphere, it is more effective as it is close to the surface. If distance length is more than 0.5m, there is no effect on reduction of temperature and comfort level of indoor environment. Lastly, for the analysis by location of the introduced water space, simulation is undertaken by dividing the water space (14% of the indoor size) with front, side, rear and center types. Temperature reduction effect is found to be : front type ($-1.53^{\circ}C$), side type ($-0.82^{\circ}C$), rear type ($-0.44^{\circ}C$), center type ($-0.28^{\circ}C$), respectively. The indoor environment change data by introduction of water space, found in this research, is at initial phase, but it is deemed to be a basic data to refer when planning actual water space.

Kinematical Analysis of Handball Step Shoot according to Attack Position (공격위치에 따른 핸드볼 스텝슛의 운동학적 분석)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.55-66
    • /
    • 2005
  • The present study used a video analysis system to quantify the kinematical data of step shoot motion by male university handball players. From the results of analyzing dynamic variables of step shoot motion according to shooting direction were drawn conclusions as follows. 1. The height of release was proportional to the height of players, and the height of release appeared low in left-side attacks. This is probably because the left-right-throwing angle is larger in left-side attacks than that in center attacks and right-side attacks and, as a result, the throwing arm is lowered down in throwing. 2. The leftward inclination angle of the body was larger in order of right-side attacks > center attacks > left side attacks. 3. Players' throwing form was close to three quarter style in left-side attacks. In center and right-side attacks, the arm was somewhat more upright but still it was more three quarter style than overhand style. 4. The front-rear throwing angle at the moment of release was much higher in right-side attacks than in left-side ones. This is probably because the point of time for releasing the ball is usually late in right-side attacks and, as a result, the front-rear throwing angle becomes quite large. 5. The contribution of body parts on the ball speed was higher in order of the forearm > upper arm, hand > shoulder joint. 6. In players whose distance between the two legs at the moment of release, their body usually did not incline to the side much. Thus it is considered necessary to correct the right leg in their shooting motion. 7. According to the result of analyzing throwing form, the speed of the ball at the moment of leaving the hand was faster in right-side attacks than in left-side and center attacks.