• Title/Summary/Keyword: Realtime Tracking

Search Result 79, Processing Time 0.022 seconds

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 2. 확률적 후보 선택을 통한 실시간 프레임워크의 설계 및 구현)

  • Lee, Yeongjun;Kim, Tae Gyun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.164-173
    • /
    • 2014
  • In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.

Block Correlator for Real-Time GPS L1 Software Receiver (소프트웨어 기반의 실시간 GPS L1 수신기를 위한 블록 상관기)

  • Kim, Tae-Hee;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • In this paper, a software-based real-time GPS L1 receiver is proposed for the block correlation techniques. Recently various navigation satellite navigation receivers in the environment for the development of more efficient software-based real-time receiver need to be developed. It is composed of components such as signal supplier, signal acquisition, signal tracking, navigation data processing, and navigation solution. They are designed and implemented as component based software for enhancing reusability and modifiability for user to have more flexibility during development of receiver. This paper will describe design, implementation, and verification of the developed realtime software GNSS receiver.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

Realtime Human Object Segmentation Using Image and Skeleton Characteristics (영상 특성과 스켈레톤 분석을 이용한 실시간 인간 객체 추출)

  • Kim, Minjoon;Lee, Zucheul;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.782-791
    • /
    • 2016
  • The object segmentation algorithm from the background could be used for object recognition and tracking, and many applications. To segment objects, this paper proposes a method that refer to several initial frames with real-time processing at fixed camera. First we suggest the probability model to segment object and background and we enhance the performance of algorithm analyzing the color consistency and focus characteristic of camera for several initial frames. We compensate the segmentation result by using human skeleton characteristic among extracted objects. Last the proposed method has the applicability for various mobile application as we minimize computing complexity for real-time video processing.

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

Development of Forensic Marking technology for tracing multiple users (다중 불법콘텐츠 복제자 추적 기술 개발)

  • Kim, Jong-An;Kim, Jin-Han;Kim, Jong-Heum
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.102-106
    • /
    • 2008
  • Forensic Marking is the technology that enables the service providers (SP) to identify the illegal digital contents distributors by first inserting markings (data indicating the user information and playback time) in realtime into the digital contents at time of playback of digital contents, and then later by extracting inserted markings from the contents which are illegally captured from the multimedia device such as IPTV STBs and distributed over the Internet. Digital Rights Management (DRM), which is a very popular content protection technology, has the security hole that can be vulnerable because the encrypted digital contents are transformed into their original plaintext forms after the decrypting process on the STBs. Therefore Forensic Marking (FM) has now become a companion content protection solution to DRM. This article describes a new way of tracking up to 4 illegal content users in FM implementation using the blue-difference chroma component of YCbCr color space. This FM technology has many advantages like fast processing time and easy portability to STB devices compared to that of the traditional watermarking processing in the frequency domain.

  • PDF

Position Tracking System Based on UWB and MEMS IMU (UWB 및 MEMS IMU 복합 센서 기반의 위치 추적 시스템)

  • Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1011-1019
    • /
    • 2019
  • In this paper, we propose a system that can more precisely identify and monitor the position of the tool used in the assembling workplace such as automobile production. The proposed positioning monitoring system is a combination of UWB communication module and MEMS IMU sensor. Since UWB does not need modulation and demodulation function and has low power density, UWB is widely used in indoor positioning field. However, it may cause positioning error due to errors in RF transmission and reception process, which may cause positioning accuracy. Therefore, in this paper, we propose an algorithm that uses IMU as an auxiliary means to compensate for errors that may occur in positioning using only UWB. The tag and anchor of UWB module measure the transmission / reception time by transmitting signals to each other and then estimate the distance between tag and anchor. The MEMS IMU sensor serves to provide positioning calibration information. The tag, which is a mobile node and attached to a moving tool, measures the three-dimensional position of the tool and transfers the coordinate data to the anchor. Thus, it is possible to confirm whether or not the specific tool is properly used according to the prescribed regulations.

Approaching Vehicles Alert System Based on the 360 Degree Camera (360 도 카메라를 활용한 보행 시 차량 접근 알림 시스템)

  • Yoon, Soyeon;Kim, Eun-ji;Lee, Won-young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.556-559
    • /
    • 2021
  • 해당 연구는 Insta evo 360° 카메라로 촬영한 Equirectangular 형태의 영상을 활용하여 보행자에게 위험한 차량을 구분한 후 실시간적으로 차량 접근 알림을 주는 시스템에 관한 연구이다. 360° 영상 속 위험 차량 탐지와 추적을 위해 파노라마와 일반도로 이미지 데이터 세트로 전이학습 된 You Look Only Once v5 (YOLOv5), 객체 추적 알고리즘 Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT), 그리고 실험을 통해 개발한 비 위험 차량 필터링 알고리즘을 활용한다. Insta evo 360° 카메라를 머리 위에 얹어 촬영한 영상을 개발한 최종 시스템에 적용한 결과, 약 90% 정확도로 영상에서 비 위험 차량과 위험 차량을 구분할 수 있고, 위험 차량의 경우 차량의 방향을 시각적으로 알려줄 수 있다. 본 연구를 바탕으로 보행자 시야각 외부의 위험 차량에 대한 경고 알림을 주어 보행자 교통사고 발생 가능성을 줄이고, 전방위를 볼 수 있는 360° 카메라의 활용 분야가 보행 안전 시스템뿐만 아니라 더 다양해질 것으로 기대한다.

A Study on Object Tracking using Variable Search Block Algorithm (가변 탐색블록을 이용한 객체 추적에 관한 연구)

  • Min Byoung-Muk;Oh Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.463-470
    • /
    • 2006
  • It is difficult to track and extract the movement of an object through a camera exactly because of noises and changes of the light. The fast searching algorithm is necessary to extract the object and to track the movement for realtime image. In this paper, we propose the correct and fast algorithm using the variable searching area and the background image change method to robustic for the change of background image. In case the threshold value is smaller than reference value on an experimental basis, change the background image. When it is bigger, we decide it is the point of the time of the object input and then extract boundary point of it through the pixel check. The extracted boundary points detect precise movement of the object by creating area block of it and searching block that maintaining distance. The designed and embodied system shows more than 95% accuracy in the experimental results.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.46-46
    • /
    • 2003
  • Since its launching on 21 December 1999, the KOrea Multi-Purpose SATellite-Ⅰ (KOMPSAT-Ⅰ) has been successfully operated by the Mission Control Element (MCE), which was developed by the Electronics and Telecommunications Research Institute (ETRI). Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. The Mission Analysis and Planning Subsystem (MAPS), which is one of the four subsystems in the MCE, played a key role in the Launch and Early Orbit Phase (LEOP) operations as well as the on-orbit mission operations. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations. We also present the orbital evolutions during the three years of the mission life of the KOMPSAT-Ⅰ.

  • PDF