• Title/Summary/Keyword: Realtime Monitoring

Search Result 234, Processing Time 0.021 seconds

Development of a Real-time OS Based Control System for Laparoscopic Surgery Robot (복강경 수술로봇을 위한 실시간 운영체제 기반 제어 시스템의 개발)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Kim, Yun-Ho;Lee, Duk-Hee;Jo, Yung-Ho;Choi, Jae-Seoon;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.32-39
    • /
    • 2008
  • This paper reports on a realtime OS based master-slave configuration robot control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. Surgery robot system requires control system that can process large volume information such as medical image data and video signal from endoscope in real-time manner, as well as precisely control the robot with high reliability. To meet the complex requirements, the use of high-level real-time OS (Operating System) in surgery robot controller is a must, which is as common as in many of modem robot controllers that adopt real-time OS as a base system software on which specific functional modules are implemened for more reliable and stable system. The control system consists of joint controllers, host controllers, and user interface units. The robot features a compact slave robot with 5 DOF (Degree-Of-Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously. Each master, slave and Gill (Graphical User Interface) host runs a dedicated RTOS (Real-time OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) on which functional modules such as motion control, communication, video signal integration and etc, are implemented, and all the hosts are in a gigabit Ethernet network for inter-host communication. Each master and slave controller set has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication with the joint controllers. Total 4 pairs of the master/slave manipulators as current are controlled by one host controller. The system showed satisfactory performance in both position control precision and master-slave motion synchronization in both bench test and animal experiment, and is now under further development for better safety and control fidelity for clinically applicable prototype.

Development and Field Application of an Amphibious Scrubbing/Suction Dredging Machine with Cylindrical Rotating Brush and Turbidity Barrier (회전브러쉬와 혼탁방지막을 활용한 수륙양용형 Scrub/흡입 준설장치의 개발과 현장적용)

  • Joo, Jin Chul;Kim, Wontae;Kim, Hyunseung;Kim, Hyunseol;Song, Ho Myun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.495-504
    • /
    • 2017
  • An amphibious scrubbing/suction dredging machine with cylindrical rotating brush, housing, and turbidity barrier was newly-developed to remove both sediments with about 10 cm thickness and periphyton attached on various structures in urban water-circulating systems through the scrubbing, suction, and dredging processes. Based on the field application and long-term monitoring, the increase in both suspended solids (SS) and turbidity of water during the scrubbing, suction, and dredging processes was negligible (p>0.05). In some cases, the turbidity of water initially increased, however, the turbidity was stabilized within 20 minutes from the start of dredging processes. The concentration changes in TN and TP of water were not statistically different (p>0.05) before and after the scrubbing, suction, and dredging processes, indicating that benthic nutrients released from sediments were not significantly diffused, and were not supposed to cause significant water pollution. Also, water treatment facilities along with an amphibious scrubbing/suction dredging machine could be more effective since the removal of contaminant loadings through the scrubbing, suction, and dredging processes was much greater than that through simple coagulation/precipitation processes. Finally, GPS-based realtime tracking and operation program have been developed and applied in various urban water-circulating systems, and development of driver cooperative autonomous driving system is in progress to eliminate the need for manual driving of an amphibious scrubbing/suction dredging machine.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.