• Title/Summary/Keyword: Realtime Association Rule Discovery Model

Search Result 2, Processing Time 0.018 seconds

An Active Candidate Set Management Model for Realtime Association Rule Discovery (실시간 연관규칙 탐사를 위한 능동적 후보항목 관리 모델)

  • Sin, Ye-Ho;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.215-226
    • /
    • 2002
  • Considering the rapid process of media's breakthrough and diverse patterns of consumptions's analysis, a uniform analysis might be much rooms to be desired for interpretation of new phenomena. In special, the products happening intensive sails on around an anniversary or fresh food have the restricted marketing hours. Moreover, traditional association rule discovery algorithms might not be appropriate for analysis of sales pattern given in a specific time because existing approaches require iterative scan operation to find association rule in large scale transaction databases. in this paper, we propose an incremental candidate set management model based on twin-hashing technique to find association rule in special sales pattern using database trigger and stored procedure. We also prove performance of the proposed model through implementation and experiment.

An Active Candidate Set Management Model on Association Rule Discovery using Database Trigger and Incremental Update Technique (트리거와 점진적 갱신기법을 이용한 연관규칙 탐사의 능동적 후보항목 관리 모델)

  • Hwang, Jeong-Hui;Sin, Ye-Ho;Ryu, Geun-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • Association rule discovery is a method of mining for the associated item set on large databases based on support and confidence threshold. The discovered association rules can be applied to the marketing pattern analysis in E-commerce, large shopping mall and so on. The association rule discovery makes multiple scan over the database storing large transaction data, thus, the algorithm requiring very high overhead might not be useful in real-time association rule discovery in dynamic environment. Therefore this paper proposes an active candidate set management model based on trigger and incremental update mechanism to overcome non-realtime limitation of association rule discovery. In order to implement the proposed model, we not only describe an implementation model for incremental updating operation, but also evaluate the performance characteristics of this model through the experiment.