• Title/Summary/Keyword: Realized Range Volatility

Search Result 3, Processing Time 0.026 seconds

An Empirical Study on Investment Performance using Properties of Realized Range-Based Volatility and Firm-Specific Volatility (실현범위변동성(RRV) 및 기업고유변동성의 속성과 투자성과 측정)

  • Byun, Youngtae
    • Management & Information Systems Review
    • /
    • v.33 no.5
    • /
    • pp.249-260
    • /
    • 2014
  • This paper explores the relationship between firm-specific volatility and some firm characteristics such as size, the market-to-book ratio of equity, PER, PBR, PCR, PSR and turnover in KOSDAQ market. In addition, I investigate whether portfolios with difference to realized range-based volatility and firm-specific volatility have different investment performance using CAPM and FF-3 factor model. The main findings of this study can be summarized as follows. First, firm-specific volatility have mostly positive relationship between firm-specific volatility and some firm characteristics. Second, this study found that realized range-based volatility and firm-specific volatility are positively related to expected return. It means that portfolios with high idiosyncratic volatility have significantly higher expected return than portfolios with low firm-specific volatility.

  • PDF

A Comparative Study on the Forecasting Performance of Range Volatility Estimators using KOSPI 200 Tick Data

  • Kim, Eun-Young;Park, Jong-Hae
    • The Korean Journal of Financial Management
    • /
    • v.26 no.2
    • /
    • pp.181-201
    • /
    • 2009
  • This study is on the forecasting performance analysis of range volatility estimators(Parkinson, Garman and Klass, and Rogers and Satchell) relative to historical one using two-scale realized volatility estimator as a benchmark. American sub-prime mortgage loan shock to Korean stock markets happened in sample period(January 2, 2006~March 10, 2008), so the structural change somewhere within this period can make a huge influence on the results. Therefore sample was divided into two sub-samples by May 30, 2007 according to Zivot and Andrews unit root test results. As expected, the second sub-sample was much more volatile than the first sub-sample. As a result of forecasting performance analysis, Rogers and Satchell volatility estimator showed the best forecasting performance in the full sample and relatively better forecasting performance than other estimators in sub-samples. Range volatility estimators showed better forecasting performance than historical volatility estimator during the period before the outbreak of structural change(the first sub-sample). On the contrary, the forecasting performance of range volatility estimators couldn't beat that of historical volatility estimator during the period after this event(the second sub-sample). The main culprit of this result seems to be the increment of range volatility caused by that of intraday volatility after structural change.

  • PDF

Bivariate long range dependent time series forecasting using deep learning (딥러닝을 이용한 이변량 장기종속시계열 예측)

  • Kim, Jiyoung;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.69-81
    • /
    • 2019
  • We consider bivariate long range dependent (LRD) time series forecasting using a deep learning method. A long short-term memory (LSTM) network well-suited to time series data is applied to forecast bivariate time series; in addition, we compare the forecasting performance with bivariate fractional autoregressive integrated moving average (FARIMA) models. Out-of-sample forecasting errors are compared with various performance measures for functional MRI (fMRI) data and daily realized volatility data. The results show a subtle difference in the predicted values of the FIVARMA model and VARFIMA model. LSTM is computationally demanding due to hyper-parameter selection, but is more stable and the forecasting performance is competitively good to that of parametric long range dependent time series models.