• Title/Summary/Keyword: Real-time polymerase chain reaction (PCR)

Search Result 456, Processing Time 0.031 seconds

Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus (Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량)

  • Lee, Hyo-Jeong;Park, Ki Beom;Han, Yeon Soo;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.120-127
    • /
    • 2021
  • Plant viruses cause significant yield losses, continuously compromising crop production and thus representing a serious threat to global food security. Tomato spotted wilt virus (TSWV) is the most harmful plant virus that mainly infects horticultural crops and has a wide host range. Reverse-transcription quantitative real-time PCR (RT-qPCR) has been widely used for detecting TSWV with high sensitivity, but its application is limited owing to the lack of standardization. Therefore, in this study, a sensitive and accurate reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) method was established for TSWV detection. Additionally, we compared the sensitivities of RT-qPCR and RT-ddPCR for TSWV detection. Specificity analysis of RT-ddPCR for TSWV showed no amplification for main pepper viruses and negative control. TSWV transcripts levels measured by RT-ddPCR and RT-qPCR showed a high degree of linearity; however, the former yielded results that were at least 10-fold more sensitive and detected lower TSWV copy numbers than the latter. Collectively, our findings show that RT-ddPCR provides improved analytical sensitivity and specificity for TSWV detection, making it suitable for identifying low TSWV concentrations in field samples.

Multiplex Quantitative Real-time Polymerase Chain Reaction Assay for Rapid Detection of Mycobacterium avium subsp. paratuberculosis in Fecal Samples (분변 시료에서 Mycobacterium avium subsp. paratuberculosis 의 빠른 검출을 위한 다중 실시간 중합효소연쇄반응기법의 개발)

  • Han, Jae-Ik;Jung, Young-Hun;Choe, Changyong;Yoo, Jaegyu;Kang, Seog-Jin;Yoo, Hansang;Park, Hongtae;Kwon, Eung-Gi;Cho, Yong-Il
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.219-223
    • /
    • 2015
  • Mycobacterium avium subsp. paratuberculosis (MAP) causes paratuberculosis or Johne's disease, an intestinal granulomatous infection in domestic and wild animals. The study aimed to develop and evaluate a panel of multiplex quantitative real-time polymerase chain reaction (mqPCR) assay for simultaneous detection of three MAP-specific genes (IS900, F57 and ISMAP02 genes). The analytic sensitivity (i.e., limit of detection, expressed as cells per 1 ml) was 150 for IS900, 1500 for F57, and 50 for ISMAP02. The specificity of the method was determined by testing 152 bovine fecal samples. Based on the test, it showed that the assay simultaneously detected the target genes in short period of time and at lower cost compared to laboratory routine tests. The test agreement between the assay and routine test was 94%. The discrepancy in the results was due to samples that were tested positive by the panel but negative by the routine tests, suggesting that the assay has higher sensitivity than the routine tests. In conclusion, the mqPCR assay could be a rapid and accurate testing tool for investigating paratuberculosis or Johne's disease cases in domestic and wild animals.

Comparison of PCR-RFLP and Real-Time PCR for Allelotyping of Single Nucleotide Polymorphisms of RRM1, a Lung Cancer Suppressor Gene (폐암 억제유전자 RRM1의 단일염기다형성 검사를 위한 PCR-RFLP법과 Real-Time PCR법의 유용성 비교)

  • Jeong, Ju-Yeon;Kim, Mi-Ran;Son, Jun-Gwang;Jung, Jong-Pil;Oh, In-Jae;Kim, Kyu-Sik;Kim, Young-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.5
    • /
    • pp.406-416
    • /
    • 2007
  • Background: Single nucleotide polymorphisms (SNPs), which consist of a substitution of a single nucleotide pair, are the most abundant form of genetic variations occurring with a frequency of approximately 1 per 1000 base pairs. SNPs by themselves do not cause disease but can predispose humans to disease, modify the extent or severity of the disease or influence the drug response and treatment efficacy. Single nucleotide polymorphisms (SNPs), particularly those within the regulatory regions of the genes often influence the expression levels and can modify the disease. Studies examining the associations between SNP and the disease outcome have provided valuable insight into the disease etiology and potential therapeutic intervention. Traditionally, the genotyping of SNPs has been carried out using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP), which is a low throughput technique not amenable for use in large-scale SNP studies. Recently, TaqMan real-time PCR chemistry was adapted for use in allelic discrimination assays. This study validated the accuracy and utility of real-time PCR technology for SNPs genotyping Methods: The SNPs in promoter sequence (-37 and -524) of lung cancer suppressor gene, RRM1 (ribonucleotide reductase M1 subunit) with the genomic DNA samples of 89 subjects were genotyped using both real-time PCR and PCR-RFLP. Results: The discordance rates were 2.2% (2 mismatches) in -37 and 16.3% (15 mismatches) in -524. Auto-direct sequencing of all the mismatched samples(17 cases) were in accord with the genotypes read by real-time PCR. In addition, 138 genomic DNAs were genotyped using real-time PCR in a duplicate manner (two separated assays). Ninety-eight percent of the samples showed concordance between the two assays. Conclusion: Real-time PCR allelic discrimination assays are amenable to high-throughput genotyping and overcome many of the problematic features associated with PCR-RFLP.

Post-pandemic influenza A (H1N1) virus detection by real-time PCR and virus isolation

  • Zaki, Ali Mohamed;Taha, Shereen El-Sayed;Shady, Nancy Mohamed Abu;Abdel-Rehim, Asmaa Saber;Mohammed, Hedya Said
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Influenza A (H1N1) virus caused a worldwide pandemic in 2009-2010 and still remains in seasonal circulation. Continuous surveillance activities are encouraged in the post pandemic phase to watch over the trend of occurrence every year, this is better to be done by a rapid and sensitive method for its detection. This study was conducted to detect proportions of occurrence of influenza A virus (H1N1) in patients with influenza-like illness. Samples from 500 patients with influenza or influenza-like clinical presentation were tested by real-time reverse transcription polymerase chain reaction (RT-PCR) and virus tissue culture. Among the total 500 participants, 193 (38.6%) were females and 307 (61.4%) males. Seventy-one patients (14.2%) were positive for H1N1 virus infection with real-time RT-PCR while 52 (10.4%) were positive by tissue culture. Non-statistically significant relation was found between age and gender with the positivity of H1N1. Sensitivity and specificity of real-time RT-PCR was 98.08% and 95.54%, respectively, in comparison to virus isolation with accuracy 95.8%. This study showed that H1N1 virus was responsible for a good proportion of influenza during the post-pandemic period. Real-time RT-PCR provides rapidity and sensitivity for the detection of influenza A virus (H1N1) compared with virus isolation and thus it is recommended as a diagnostic tool.

Comparison of Loop-Mediated Isothermal Amplification and Real-Time PCR for the Rapid Detection of Salmonella Typhimurium, Listeria monocytogenes and Cronobacter sakazakii Artificially Inoculated in Foods (식품에 인위접종된 Salmonella Typhimurium, Listeria monocytogenes, Cronobacter sakazakii의 신속검출을 위한 Real-time PCR과 Loop-mediated isothermal amplification 비교)

  • Kim, Jin-Hee;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.135-139
    • /
    • 2019
  • The objective of this research was to compare loop-mediated isothermal amplification (LAMP) with real-time polymerase chain reaction (PCR) for the rapid detection of pathogens in foods. In this study, the limits of detection (LODs) for Salmonella Typhimurium, Listeria monocytogenes, and Cronobacter sakazakii were evaluated in various foods. Among 11 samples tested for S. Typhimurium, LAMP and real-time PCR had the same LODs in beef and duck meat whereas real-time PCR was more sensitive than the LAMP in 8 samples. However, S. Typhimurium in chocolate samples was not detected by real-time PCR. The sensitivity of real-time PCR was high in all samples inoculated with L. monocytogenes and C. sakazakii whereas LAMP was more sensitive than real-time PCR in oil-rich foods. Therefore, LAMP can be shown as an easrer, more convenient method, as well as effective analytical method for testing difficult samples when employed in PCR.

Performance of Quantitative Real-Time PCR for Detection of Tuberculosis in Granulomatous Lymphadenitis Using Formalin-Fixed Paraffin-Embedded Tissue

  • Munkhdelger, Jijgee;Mia-Jan, Khalilullah;Lee, Dongsup;Park, Sangjung;Kim, Sunghyun;Choi, Yeonim;Wang, Hye-Young;Jeon, Bo-Young;Lee, Hyeyoung;Park, Kwang Hwa
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2013
  • Although culture is the gold standard method to identify mycobacteria, its use in tuberculous lymphadenitis (TBL) is limited due to formalin fixation of the submitted specimens. We evaluated the performance of quantitative real-time PCR (q-PCR) for Mycobacterium Tuberculosis (MTB) in granulomatous lymphadenitis using formalin-fixed paraffin-embedded (FFPE) tissues. From 2000 to 2010, a total number of 117 cases of lymph node samples with granulomatous inflammation which were surgically removed and fixed in formalin were studied. Hematoxylin & Eosin (H&E) and Ziehl-Neelsen-stained (ZN) slides were reviewed. qPCR using Real TB-Taq$^{(R)}$ was performed for all cases to identify Mycobacterium tuberculosis. Thirteen non-tuberculous lymphadenopathy cases were used as negative control. Cervical lymph nodes were more frequently affected (60%, 70/117) than other sites. ZN stain for acid fast bacilli was positive in 19 (16.24%) cases. qPCR for tuberculosis was positive in 92 (78.63%) cases. Caseous necrosis was found in 103 (88.03%) cases. While the ZN stain and qPCR were both negative in all control cases, the qPCR showed a significantly higher positive rate (78.63% vs. 16.24%) compared to ZN stain in histologically diagnosed TBL. Quantitative real-time PCR proves to be more sensitive than ZN stain for diagnosis of tuberculous lymphadenitis.

Expressional Patterns of Connexin Isoforms in the Rat Epididymal Fat during Postnatal Development

  • Lee, Ki-Ho;Kim, Nan Hee
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • In the multicellular tissue, cell-cell interaction is important for a precise control of its function. The exchange of signaling molecules between adjacent cells via connexon allows the functional harmony of cells in the tissue. The present research was to determine the presence and expressional patterns of connexin (Cx) isoforms in the rat epididymal fat during postnatal development using quantitative real-time polymerase chain reaction (PCR) analysis. Of 13 Cx isoforms examined, expression of 11 Cx isoforms in the epididymal fat during postnatal development was detected. These Cx isoforms include Cx26, Cx31, Cx31.1, Cx32, Cx33, Cx36, Cx37, Cx40, Cx43, Cx45, and Cx50. Expressional levels of all Cx isoforms at 1 and 2 years of age were significantly higher than those at the early postnatal ages, such as 7 days, 14 days, and 24 days of ages. Except Cx33 and Cx43, the transcript levels of rest Cx isoforms at 1 year of age were significantly lower than that at 2 years of age. In addition, expressional patterns of Cx isoforms between 7 days and 5 months of ages generally varied according to the isoform. The existence of various Cx isoforms in the rat epididymal fat has been identified and expression of each Cx isoform in the epididymal fat during postnatal development has shown a particular pattern, distinguishable from the others. To our knowledges, this is the first report showing expressional patterns of Cx isoforms at transcript level in the epididymal fat at various postnatal ages.

Expressional Modulation of Aquaporin 1 and 9 in the Rat Epididymis by an Anabolic-Androgenic Steroid, Nandrolone Decanoate

  • Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • The spermatozoa become mature in the epididymis which is divided into initial segment and caput, corpus, and cauda epididymis. The water movement across the epididymal epithelium is important for creating luminal microenvironment for sperm maturation. Aquaporins (Aqps) are water channel proteins, and expression of Aqps is regulated by androgens. The current research was focused to examine expressional regulation of Aqp1 and Aqp9 by an androgenic-anabolic steroid, nandrolone decanoate (ND). The ND at the low dose (2 mg/kg body weight/week) or high dose (10 mg) was subcutaneously administrated into male rats for 2 or 12 weeks. Transcript levels of Aqp1 and Aqp9 were determined by quantitative real-time polymerase chain reaction (PCR) analyses. In the initial segment, level of Aqp1 was decreased with 12 week-treatment, while Aqp9 level was decreased by the high dose treatment for 12 weeks. In the caput epididymis, Aqp9 expression was decreased by the low dose treatment. The 2 week-treatment resulted in an increase of Aqp1 level but a decrease of Aqp9 expression in the corpus epididymis. In the corpus epididymis, the 12 week-treatment at the low dose caused the reduction of Aqp1 and Aqp9 levels, but the high dose treatment resulted in an increase of Aqp1 expression and a decrease of Aqp9 level. In the cauda epididymis, Aqp1 expression was decreased by 2 and 12 week-treatments, while increases of Aqp9 levels was detected with the high dose treatment for 2 weeks and with 12 week-treatment. These findings indicate differential regulation of Aqp1 and Aqp9 expression among epididymal segments by ND.

Comparative Study of Target Genes and Protocols by Country for Detection of SARS-CoV-2 based on Polymerase Chain Reaction (PCR) (중합효소 연쇄반응 기반의 코로나-19 바이러스 검출법에 대한 국가별 목표 유전자 및 프로토콜 비교 연구)

  • Kim, Jin-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.465-474
    • /
    • 2021
  • Corona-19, a disease caused by 'Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)', was declared a global pandemic by the World Health Organization (WHO) in March 2020, and a real-time polymerase chain reaction test is performed as a diagnostic test for screening and confirmation in most countries. However, not only the target genes and protocols differ by countries, but also the procedures for reading the diagnosis results are diverse, so the criteria for confirmed patients differ by country. Therefore, in this review, we discussed the target genes, test techniques, and diagnostic criteria for each country notified by WHO. And the specificity and sensitivity, limits of detection, positive and negative controls, false positive bacteria candidates, and specimens, and the specifics of the control setting were also described. In addition, the characteristics of Korea's test were compared to each country's one. Finally, in order to obtain the same diagnosis result for SARS-CoV-2 in the future, standardized diagnosis methods and result interpretations for Corona-19 diagnosis were proposed.

Effect of Tetrodotoxin on the Proliferation and Gene Expression of Human SW620 Colorectal Cancer Cells

  • Bae, Yun-Ho;Kim, Hun;Lee, Sung-Jin
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Tetrodotoxin (TTX) is a natural neurotoxin found in several species of puffer fish belonging to Tetraodon fugu genus and has been reported to affect processes such as proliferation, metastasis and invasion of various cancer cells. However, it was not revealed which genes were influenced by these reactions. In this experiment, it was examined in human SW620 colorectal cancer cells. The proliferation of SW620 cells was significantly reduced when treated with 0, 1, 10 and 100 μM TTX for 48 h. It was confirmed using Annexin V-propidium iodide staining that some apoptosis was induced. Differentially expressed genes (DEGs) affecting cell proliferation through RNA sequencing (RNA-seq) were selected. The expression change of DEGs was confirmed by conducting quantitative real-time polymerase chain reaction (qRT-PCR). As a result, the mRNA expression of FOS and WDR48 genes was found to be increased in the 100 μM TTX treatment group compared to the control group. On the other hand, the mRNA expression of ALKBH7, NDUFA13, RIPPLY3 and SELENOM genes was found to be reduced, and in the case of the ALKBH7 gene was identified to show significant differences. This experiment suggests that TTX can be used as an important fundamental data to elucidate the mechanism that inhibits the proliferation of SW620 cells.