• 제목/요약/키워드: Real-time issues

검색결과 667건 처리시간 0.027초

대표 패턴 마이닝에 활용되는 패턴 압축 기법들에 대한 분석 및 성능 평가 (Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining)

  • 이강인;윤은일
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.77-83
    • /
    • 2015
  • 데이터 마이닝에서 활발히 연구되고 있는 주요 분야들 가운데 하나인 빈발 패턴 마이닝은 대규모의 데이터 집합 또는 데이터베이스로부터 숨겨진 유용한 패턴 정보를 추출하기 위한 방법이다. 또한 이 기법으로 얻을 수 있는 결과물을 통해 데이터베이스내의 다양하고 중요한 특징들을 더욱 손쉽게 자동적으로 분석할 수 있기 때문에 많은 응용영역에도 활발히 적용되고 있다. 하지만 이러한 데이터베이스로부터 단순히 사용자에 의해 설정된 최소 지지도 임계값만을 가지고 이를 만족하는 모든 패턴들을 추출하는 기존의 전통적인 빈발 패턴 마이닝 방식은 데이터베이스의 특성과 임계값 설정의 정도에 따라 극도로 많은 수의 결과 패턴을 생성하는 문제를 가지며, 이에 따른 시간 및 공간 자원의 낭비를 초래한다. 또한 과도하게 생성된 패턴에 대한 분석의 어려움 역시 심각한 문제가 된다. 기존의 빈발 패턴 마이닝 접근방법들이 직면한 이러한 문제를 해결하고자, 데이터베이스로부터 가능한 모든 빈발 패턴들을 마이닝하는 것이 아닌, 이들에 대한 대표 패턴들만은 선별적으로 추출할 수 있도록 하는 대표 패턴 마이닝의 개념과 다양한 관련 기법들이 제안되었다. 본 논문에서는 생성되는 각 패턴의 최대성 또는 폐쇄성을 고려하는 패턴 압축 기법들에 대한 특성들을 기술하고, 이에대한 비교 및 분석을 진행한다. 최대 빈발 패턴 혹은 닫힌 빈발 패턴들을 마이닝함으로써, 효과적인 패턴 압축이 가능하며, 더 적은 시공간 자원으로 마이닝 작업을 수행할 수 있다. 또한 압축된 패턴들은 필요시 다시 원래의 패턴 형태로 복구가 가능한 특징이 있으며, 특히 닫힌 패턴 접근 방법을 이용하면 패턴을 압축하고 다시 해제하는 과정에서 어떠한 정보의 손실도 일어나지 않는다. 본 논문에서는 같은 플랫폼 상에서 동일한 구현 수준의 알고리즘에 대해 실세계로부터 축적된 실 데이터셋들을 가지고 상기 기법들에 대한 성능평가를 진행함으로써, 각 기법이 패턴 생성, 수행 시간, 메모리 사용량과 같은 실제적인 마이닝 성능에 대해 어떠한 영향을 미치는지에 대한 심층적 분석결과를 보인다.

수입소비재(輸入消費財) 유통구조(流通構造)의 효율화(效率化) 방안(方案) (An Analysis of the Imported Consumer Goods Distribution Sector of Korea: From a Vertical Structure Viewpoint)

  • 남일총
    • KDI Journal of Economic Policy
    • /
    • 제13권1호
    • /
    • pp.3-33
    • /
    • 1991
  • 80년대에 들어서 본격화된 개방정책(開放政策)의 결과 대부분의 소비재(消費財)가 수입가능품목(輸入可能品目)이 되었고 이에 따라 소비재(消費財)의 수입(輸入)은 급격한 증가추세를 보이고 있으며 이 추세는 당분간 지속될 것으로 전망된다. 본고(本稿)에서는 우리나라의 수입소비재(輸入消費財) 유통구조(流通構造)의 현황(現況)을 분석하고 가격상승 및 후생감소를 야기시키는 문제점을 파악하며 이의 개선방안(改善方案)을 모색해 보았다. 본고(本稿)에서는 기존의 연구와는 달리 수입소비재(輸入消費財) 유통구조(流通構造)를 국제시장(國際市場)-수입단계(輸入段階)-국내(國內) 도(都) 소매단계(小賣段階)의 수직적 구조로 파악하고 이 수직적 구조를 구성하는 각 수평단계의 산업조직 및 수평단계를 연결하는 수직적 관계를 중심으로 하여 가격결정과정과 문제점을 분석하였다. 수입소비재(輸入消費財) 유통구조(流通構造)의 수평단계는 상품(商品) 및 지역(地域)에 의해 차별화된 독점적 경쟁 시장으로 볼 수 있으며, 수평단계간에는 대리점계약(代理店契約)과 재판매가격유지(再販賣價格維持)의 수직적(垂直的) 통제(統制)(vertical restraints)가 흔히 사용되고 있다. 수입소비재(輸入消費財) 유통구조(流通構造)의 주요 문제점으로는 독과점적(獨寡占的) 수입(輸入)에 따른 수입상의 독과점력, 국내 메이커에 의한 동종상품 수입에 의한 경쟁제한, 유통업자간의 담합 및 이의 유지를 위한 재판매가격유지(再販賣價格維持)의 성행, 불확실성(不確實性)과 정보불균형(情報不均衡)을 지적할 수 있다. 이러한 문제점을 시정하여 수입소비재(輸入消費財) 및 경쟁국산상품(競爭國産商品)의 가격하락(價格下落)과 국산상품(國産商品)의 품질개선(品質改善)을 유도하기 위하여는 독과점적 수입계약과 국내메이커에 의한 동종상품의 수입에 대한 공정거래규제(公正去來規制)를 도입하여야 하며, 수입가격표시제의 확대실시 및 탄력적 운영을 통한 합리적(合理的) 정보제공(情報提供)이 필요하다고 판단된다. 수입소비재(輸入消費財)의 유통구조는 또한 국내(國內) 도(都) 소매업(小賣業)의 일반적인 문제점으로 지적되고 있는 규모의 영세성, 무자료거래의 성행, 근대적 대형유통업체(大型流通業體)의 부족의 문제점을 가지고 있다. 이러한 문제점은 기본적으로 상가(商街)와 물류시설(物流施設)의 공급부족과 현행 부가가치세제(附加價値稅制)에 그 원인이 있다. 따라서 수입소비재 유통구조의 생산성을 향상시키고 경쟁을 촉진하기 위해서는 상업용 및 물류시설용 부동산의 공급확대유도(供給擴大誘導)와 부가가치세제(附加價値稅制)의 합리적 운영이 필요하다고 사료된다.

  • PDF

군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구 (A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws)

  • 정지인;김민태;김우주
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.109-125
    • /
    • 2020
  • 군(軍)에서 방위력개선사업(이하 방위사업)은 매우 투명하고 효율적으로 이루어져야 함에도, 방위사업 관련 법 및 규정의 과도한 다양화로 많은 실무자들이 원활한 방위사업 추진에 어려움을 겪고 있다. 한편, 방위사업 관련 실무자들이 각종 문서에서 다루는 법령 문장은 문장 내에서 표현 하나만 잘못되더라도 심각한 문제를 유발하는 특징을 가지고 있으나, 이를 실시간으로 바로잡기 위한 문장 비교 시스템 구축에 대한 노력은 미미했다. 따라서 본 논문에서는 Siamese Network 기반의 자연어 처리(NLP) 분야 인공 신경망 모델을 이용하여 군(軍)의 방위사업 관련 문서에서 등장할 가능성이 높은 문장과 이와 관련된 법령 조항의 유사도를 비교하여 위법 위험 여부를 판단·분류하고, 그 결과를 사용자에게 인지시켜 주는 '군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템' 구축 방안을 제안하려고 한다. 직접 제작한 데이터 셋인 모(母)문장(실제 법령에 등장하는 문장)과 자(子)문장(모(母)문장에서 파생시킨 변형 문장) 3,442쌍을 사용하여 다양한 인공 신경망 모델(Bi-LSTM, Self-Attention, D_Bi-LSTM)을 학습시켰으며 1 : 1 문장 유사도 비교 실험을 통해 성능 평가를 수행한 결과, 상당히 높은 정확도로 자(子)문장의 모(母)문장 대비 위법 위험 여부를 분류할 수 있었다. 또한, 모델 학습에 사용한 자(子)문장 데이터는 법령 문장을 일정 규칙에 따라 변형한 형태이기 때문에 모(母)·자(子)문장 데이터만으로 학습시킨 모델이 실제 군(軍) 보고서에 등장하는 문장을 효과적으로 분류한다고 판단하기에는 제한된다는 단점을 보완하기 위해, 실제 군(軍) 보고서에 등장하는 형태에 보다 더 가깝고 모(母)문장과 연관된 새로운 문장 120문장을 추가로 작성하여 모델의 성능을 평가해본 결과, 모(母)·자(子)문장 데이터만으로 학습시킨 모델로도 일정 수준 이상의 성능을 확인 할 수 있었다. 결과적으로 본 연구를 통해 방위사업 관련 군(軍) 보고서에서 등장하는 여러 특정 문장들이 각각 어느 관련 법령의 어느 조항과 가장 유사한지 살펴보고, 해당 조항과의 유사도 비교를 통해 위법 위험 여부를 판단하는 '실시간 군(軍) 문서와 관련 법령 간 자동화 비교 시스템'의 구축 가능성을 확인할 수 있었다.

기업의 SNS 노출과 주식 수익률간의 관계 분석 (The Analysis on the Relationship between Firms' Exposures to SNS and Stock Prices in Korea)

  • 김태환;정우진;이상용
    • Asia pacific journal of information systems
    • /
    • 제24권2호
    • /
    • pp.233-253
    • /
    • 2014
  • Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.

얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션 (3D Facial Animation with Head Motion Estimation and Facial Expression Cloning)

  • 권오륜;전준철
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.311-320
    • /
    • 2007
  • 본 논문에서는 강건한 얼굴 포즈 추정과 실시간 표정제어가 가능한 비전 기반 3차원 얼굴 모델의 자동 표정 생성 방법 및 시스템을 제안한다. 기존의 비전 기반 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 반영하지 못하고 얼굴 표정 생성에 초점을 맞추고 있다. 그러나, 얼굴 포즈를 정확히 추정하여 반영하는 작업은 현실감 있는 얼굴 애니메이션을 위해서 중요한 이슈로 인식되고 있다. 본 연구 에서는 얼굴 포즈추정과 얼굴 표정제어가 동시에 가능한 통합 애니메이션 시스템을 제안 하였다. 제안된 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출은 비모수적 HT 컬러 모델과 템플릿 매칭을 통해 수행된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 얼굴 모션 추정을 위하여 3차원 실린더 모델을 검출된 얼굴 영역에 투영하고 광류(optical flow) 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 주요 얼굴 특징점을 검출하며 광류 알고리즘에 의하여 특징점을 추적한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수(parameters)를 계산한다. 결국 얼굴 표정 복제는 두 개의 정합과정을 통해 수행된다. 애니메이션 매개변수 3차원 얼굴 모델의 주요 특징점(제어점)의 이동은 획득된 애니메이션 매개변수를 적용하여 수행하며, 정점 주위의 부가적 정점의 위치는 RBF(Radial Basis Function) 보간법을 통해 변형한다. 실험결과 본 논문에서 제안된 비전기반 애니메이션 시스템은 비디오 영상으로부터 강건한 얼굴 포즈 추정과 얼굴의 표정변화를 잘 반영하여 현실감 있는 애니메이션을 생성함을 입증할 수 있었다.

상황인식 기반 지능형 최적 경로계획 (Intelligent Optimal Route Planning Based on Context Awareness)

  • 이현정;장용식
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구 (A Study about The Impact of Music Recommender Systems on Online Digital Music Rankings)

  • 김현모;김민용;박재홍
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.49-68
    • /
    • 2014
  • 대다수의 국내외 온라인 디지털 음원 유통 사이트들은 음원 판매 활성화 방책의 일환으로 음원 추천시스템을 가지고 있다. 국외의 경우와 다르게, 우리나라의 시장점유율이 가장 높은 온라인 디지털음원 유통 사이트 5곳은 독자적인 기준으로 추천 음원을 선정하고 있으며, 추전 음원의 선정 기준 및 절차를 소비자에게 공개하고 있지 않다. 본 연구는 국내 온라인 디지털 음원 유통 사이트가 보유한 음원 추천시스템의 공정성 여부를 확인하고, 이러한 음원 추천시스템으로부터 선정된 추천 음원이 음원차트에서 어떠한 영향력을 갖는지 확인하는 것을 목적으로 한다. 2012년 11월부터 약 한달 간 온라인 디지털 음원 유통 사이트의 일간 음원차트에 등록되어 있는 1위부터 100위까지의 음원과 추천 음원을 수집하였다. 먼저, 수집된 음원 데이터를 기반으로 음원 추천시스템의 공정성 여부를 실증적인 방법으로 확인하였다. 첫째, 추천 음원의 노출 위치를 분석하였으며 둘째, 추천 음원이 제공되는 서비스 구조를 확인하였다. 셋째, 기획사에 따른 추천 음원 분포를 확인하였다. 더 나아가 이러한 음원 추천시스템으로부터 선정된 추천 음원이 음원차트 내에서 어떠한 영향력을 갖는지 실증적인 분석 방법으로 확인 하였다. 첫째, 음원차트의 동일 비동일 진입 시기에 따라 추천 음원과 미추천 음원의 순위 변화를 비교 분석하였다. 둘째, 모든 사이트에서 동시에 중복 추천된 음원과 단일 추천된 음원의 순위 변화를 비교 분석하였다. 셋째, 추천 받은 음원이 음원차트에 처음으로 진입하는 시기 및 순위를 확인하였다. 넷째, 음원차트 상위권 순위에 분포되어 있는 추천 음원의 비율을 확인하였다. 본 연구는 국내 온라인 디지털 음원 유통 사이트가 보유한 음원 추천시스템의 현행 및 현상에 대해 실증적으로 분석하여 공정성 문제를 제기하였으며, 음원 추천시스템이 음원차트에 미치는 파급력을 확인하였다는 것에 학술적 의의를 가진다. 또한 온라인 디지털 음원 유통 사이트의 내 외부 이해관계자에게 음원 추천시스템 악용에 대한 경각심을 고취시켜 음원차트의 공정성을 확보하고자하는 것에 산업적 의의를 가진다.

초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안 (A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image)

  • 권영화;김동수;유호준
    • 한국수자원학회논문집
    • /
    • 제53권10호
    • /
    • pp.845-859
    • /
    • 2020
  • 최근 기후변화와 여름철 고온 등으로 인한 녹조현상, 사고발생으로 인한 화학물질 및 유류 유출 등 수질오염과 관련된 사회적 관심이 높아지고 있다. 수질오염 사례 중 화학사고로 인한 유해화학물질 유출은 인체에 접촉시 인체에 악영향을 끼치며, 대기·수질·토양을 오염시키고 주변 농작물의 변색이나 괴사를 유발하는 등 생태환경에 직접적인 피해가 발생한다. 하천으로 유출가능성이 있는 화학물질은 무색의 수용성인 경우가 많아 육안으로 유출 사실을 확인하기가 어렵다. 화학사고 발생시 화학물질의 탐지는 간이접촉식탐지장비를 이용하거나 화학물질의 유출이 우려되는 곳에 검출센서를 설치해 사고를 감시하고 있다. 이러한 접촉식 센서는 현장인력에 의존적이고, 설치식 검출센서 또한 제한적으로 설치되어 미설치 지역에 대한 능동적 탐지가 어렵다는 한계가 있다. 한편 최근 초분광 영상을 활용하여 물질 고유의 분광특성을 분석함으로써 토지피복, 식생, 수질 등의 식별에 활용되고 있다. 따라서 초분광 센서를 활용한 화학물질 감지 가능성도 보여주고 있지만 연구는 미비한 실정이다. 본 연구에서는 수계로 유출되는 유해화학물질을 식별하기 위하여 접촉식 탐지 기술의 한계를 극복할 수 있는 원격탐사기법과 최신 센서기술을 활용하였다. 유해화학물질 18종을 대상으로 초분광 영상을 이용한 상호 구분이 가능한 지 확인하고자 해당 유해화학물질의 초분광 영상을 촬영하여 분광라이브러리를 구축하였다. 향후 연구를 통해 유해화학물질 분광라이브러리 데이터베이스를 확대하고, 하천 적용에 대한 검증을 실시한 후 실시간 모니터링에 적용할 경우 신속한 화학사고 발생여부 감지 및 대응에 활용할 수 있을 것으로 기대된다.

임진정계시 '입지암류(入地暗流)'의 위치와 '토문강원(土門江源)'의 송화강 유입 여부 (A Reinvestigation on Key Issues Associated with the Yimjin(1712) Boundary Making and Demarcation: Location of 'Yipjiamlyu' and the Confluence of 'Tomungangweon' into the Sungari River)

  • 이강원
    • 대한지리학회지
    • /
    • 제50권6호
    • /
    • pp.571-605
    • /
    • 2015
  • 연구결과 다음과 같은 점이 확인되었다. 첫째, 목극등 지도의 '입지암류(入地暗流)'는 지리학적으로 '복류시작지점'을 의미하며, 오늘날 대각봉 북북동의 흑석구 하도, 해발고도 약 1,840m 지점이다. 둘째, 임진정계시 '토문강원(土門江源: 두만강원)'[흑석구]은 송화강에 유입되며, 목극등과 조선측 임진정계 참여자들도 1712년 5월 17~18일경 이 사실을 알았다. 이러한 두 가지 사실에 입각하여 임진정계를 재구성하면 다음과 같다. 목극등은 정계비를 압록강 송화강 최상류 분수계 부근에 세웠다. 압록강 토문강(두만강)의 최상류 분수계를 찾는다는 그의 의도대로라면, 정계비는 대연지봉에 세웠어야 한다. 5월 12일 그는 자신이 '토문강원(두만강원)'[흑석구]이라고 간주한 하도에서 '입지암류'를 발견했으며, 이곳으로부터 하도를 따라 복류하는 물이 다시 용출하여 토문강(두만강)이 된다고 생각하고, 5월 15일 정계비를 세웠다. 그러나 5월 17~18일경 이 하도가 토문강(두만강)이 아닌 '서류하천'(송화강 지류)에 연결된다는 것을 알았다. 이에 5월 19일 그는 다시 조선측이 가리킨 두만강(토문강) 용출처로 향했으며, 도중에 물이 나오는 것('수출(水出)')을 발견하고 자신이 '토문강원(두만강원)'이라고 생각한 물줄기가 다시 용출한 것이라고 지목하였다. 정계비로부터 이어지는 물줄기가 '입지암류' 지점에서 복류하기 시작하여 '수출'에서 다시 나와 토문강(두만강)이 된다고 이해한 것이다. 그는 "정계비-'토문강원(두만강원)'-'입지암류'-'수출'-토문강(두만강) 본류"로 물이 이어진다고 생각하고, 이를 조 청 국경으로 삼았으며, 그중 "정계비-'토문강원(두만강원)'-'입지암류'-'수출'"을 따라 경계표지물을 설치할 것을 조선측에 요구하였다. 그러나 목극등 귀국 후인 8월초 조선측 경계표지물 설치 실무자들은 목극등이 지목한 '수출'이 두만강(토문강) 수계가 아니라는 점을 알게 되었다. 조선측 실무자들은 "정계비-'토문강원(두만강원)'-황화송전자 부근-'수출'"을 목극등이 설정한 경계로 이해하고 경계표지물 설치작업을 하다가, 자신들이 확인한 두만강(토문강) 용출처까지 경계표지물을 연결하였다. 조선정부도 1713년 3월 이를 추인하였고, 이후 이러한 실무자들의 견해에 따라 중간의 경계표지물 미설치 구간에 대한 공사를 진행하였다. 경계표지물 설치에 대한 목극등의 요구와 조선측의 실행 사이에는 상당한 차이가 존재한다. 조선측 실무자들이 이렇게 경계표지물을 설치한 것은 황화송전자 부근을 목극등의 '입지암류' 지점으로 이해했고, 자신들이 확인한 두만강(토문강) 용출처가 진정한 두만강(토문강) 용출처라고 생각했기 때문이다. 임진정계시 조 청 모두 압록강과 두만강(토문강)을 국경으로 인식하고 정계에 임하였다. 문제는 두만강(토문강) 수계를 잘못 이해했다는 점이다. 압록강에 대한 수계 판단은 비교적 정확했으나, 두만강(토문강)에 대한 수계 판단에서 유일하게 옳았던 것은 조선측 실무자들이 발견한 두만강(토문강) 용출처였을 뿐이다.

  • PDF