• Title/Summary/Keyword: Real-time hybrid test

Search Result 85, Processing Time 0.024 seconds

The SOC, Capacity-fade, Resistance-fade Estimation Technique using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery (하이브리드 자동차용 리튬배터리의 충전량, 용량감퇴, 저항감퇴 예측을 위한 슬라이딩 모드 관측기 설계)

  • Kim, Il-Song;Lhee, Chin-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.839-844
    • /
    • 2008
  • A novel state of health estimation method for hybrid electric vehicle lithium battery using sliding mode observer has been presented. A simple R-C circuit method has been used for the lithium battery modeling for the reduced calculation time and system resources due to the simple matrix operations. The modeling errors of simple model are compensated by the sliding mode observer. The design methodology for state of health estimation using dual sliding mode observer has been presented in step by step. The structure of the proposed system is simple and easy to implement, but it shows robust control property against modeling errors and temperature variations. The convergence of proposed observer system has been proved by the Lyapunov inequality equation and the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed observer system has superior tracking performance with reduced calculation time under the real driving environments.

Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure (강 뼈대 구조물의 단자유도 하이브리드 동적 실험)

  • Kim, Se-Hoon;Na, Ok-Pin;Kim, Sung-Il;Lee, Jae-Jin;Kang, Dae-Hung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2012
  • The purpose of this study is to evaluate the structural dynamic behavior under hybrid control system. The hybrid test is to consider the interaction between the numerical and physical models. In this paper, single degree of freedom hybrid test was performed with one-bay, two-story steel frame structure. One column at the first floor was selected as a physical substructure and one actuator was used for applying the displacement load in horizontal direction. El Centro as earthquake waves was inputted and OpenSees was employed as the numerical analysis program for the hybrid real-time simulation. As a result, the total time of the hybrid test was about 9.6% of actual measured seismic period. The experimental results agreed well with the numerical one in terms of the maximum displacement. In nonlinear analysis, however, material nonlinearity made a difference of residual strain. Therefore, this hybrid dynamic test can be used to predict the structural dynamic performance more effectively than shaking table test, because of the spatial and economic limitations.

On-Line Travel Time Estimation Methods using Hybrid Neuro Fuzzy System for Arterial Road (검지자료합성을 통한 도시간선도로 실시간 통행시간 추정모형)

  • 김영찬;김태용
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.171-182
    • /
    • 2001
  • Travel Time is an important characteristic of traffic conditions in a road network. Currently, there are so many road users to get a unsatisfactory traffic information that is provided by existing collection systems such as, Detector, Probe car, CCTV and Anecdotal Report. This paper presents the results achieved with Data Fusion Model, Hybrid Neuro Fuzzy System for on - line estimation of travel times using RTMS(Remote Traffic Microwave Sensor) and Probe Data in the signalized arterial road. Data Fusion is the most important process to compose the various of data which can present real value for traffic situation and is also the one of the major process part in the TIC(Traffic Information Center) for analyzing and processing data. On-line travel time estimation methods(FALEM) on the basis of detector data has been evaluated by real value under KangNam Test Area.

  • PDF

A Hybrid Approach for Regression Testing in Interprocedural Program

  • Singh, Yogesh;Kaur, Arvinder;Suri, Bharti
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • Software maintenance is one of the major activities of the software development life cycle. Due to the time and cost constraint it is not possible to perform exhaustive regression testing. Thus, there is a need for a technique that selects and prioritizes the effective and important test cases so that the testing effort is reduced. In an analogous study we have proposed a new variable based algorithm that works on variables using the hybrid technique. However, in the real world the programs consist of multiple modules. Hence, in this work we propose a regression testing algorithm that works on interprocedural programs. In order to validate and analyze this technique we have used various programs. The result shows that the performance and accuracy of this technique is very high.

Evaluation on real-time multi-point sensing performance of IoT-based hybrid measurement system (IoT 기반 하이브리드 계측시스템 실시간 다점 측정 성능 평가)

  • Kim, Heonyoung;Kang, Donghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.543-550
    • /
    • 2018
  • The rapid growth of IoT technology induced by the fourth industrial revolution has resulted in research into various types of wireless sensors, and applications based on this technology are prevalent in many areas. However, among the various sites where this technology is used, railway bridges and tunnels with lengths of tens of kilometers have problems with data acquisition, due to the signal noise induced by the long distance measurement and EMI induced by the high voltage power feeding system, when conventional electric sensors are used. To overcome these problems, many studies on fiber optic sensors have been conducted as a substitute for the conventional electric sensors. However, restrictions on the types of fiber optic sensors have limited their application in railways. For this reason, a hybrid measurement system with IoT based wireless data communication, in which both electric and fiber optic sensors can be applied simultaneously, has been developed. In this study, in order to evaluate the applicability of the hybrid measurement system developed in the previous study, a real-time test for 4 types of measurement environments, which reflect possible railway sites, is performed. As a result, it was confirmed that the signals from both the electric and fiber optic sensors, which were acquired at a remote area in real-time, showed good agreement with each other and that this measurement system has the potential to handle sensors with a sampling rate of 2.5 kHz. In the future, it is expected that the IoT-based hybrid measurement system will contribute to the improvement of structural safety by enabling real-time structural health monitoring when applied to various measurement sites.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Development of Data Model for Structural Tests (구조실험을 위한 데이터 모델의 개발)

  • Lee, Chang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.713-718
    • /
    • 2007
  • Structural tests often involve a large amount of complicated information. Data models can be used to efficiently organize the information. This paper briefly describes a data model for structural tests including hybrid tests, performed by the Real-Time Multi-Directional (RTMD) facility at the ATLSS Center of Lehigh University in America. The RTMD facility is an equipment site within the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES). The data model is called the Lehigh Model. An overview of classes and attributes of the Lehigh Model is presented, and the Lehigh Model is compared with other data models to show its benefits for structural testing.

  • PDF

Characteristics of the Real-Time Operation For COMS Normal Operation (천리안위성 정상 운영의 실시간 운영 특성)

  • Cho, Young-Min;Park, Cheol-Min;Kim, Bang-Yeop;Lee, Sang-Cherl
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.80-87
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2{\circ}$ east longitude on the geostationary orbit and currently under normal operation service since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band communication payload. The satellite controls for the three mission operations and the satellite maintenance are done by the real-time operation which is the activity to communicate directly with the satellite through command and telemetry. In this paper the real-time operation for COMS is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, seasonal, and yearly operation activities. The successful real-time operation is also confirmed with the one year operation results for 2011 which includes both the latter part of the In-Orbit-Test (IOT) and the first year normal operation of the COMS.

Adaptive Resource Allocation for Traffic Flow Control in Hybrid Networks

  • Son, Sangwoo;Rhee, Byungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • Wireless network systems provide fast data transmission rates and various services to users of mobile devices such as smartphones and smart pads. Because many people use high-performance mobile devices, the use of real-time multimedia services is increasing rapidly. However, the preoccupation of resources by real-time traffic users is causing harm to other services-for example, frequent call interference, lowered service quality, and poor network performance. This paper suggests a resource allocation algorithm for effective traffic service support in a hybrid network. The main objective is to obtain an optimum value of data rates by comparing user requirements with the amount of resources that can be allocated. A new mechanism based on Adaptive-Quality of Service (QoS) and a monitoring system based on Queue-Aware are proposed. Adaptive-QoS supports effective resource control according to the type of traffic service, and the monitoring system based on Queue-Aware measures the amount of resources in order to calculate the maximum that can be allocated. We apply our algorithm to a test system and use Qualnet 4.5.1 to evaluate its performance.

Investigating the Influence of Rate Dependency and Axial Force on the Seismic Performance Evaluation of Isolation Bearing (면진받침의 내진성능평가를 위한 실험 시 속도의존성과 수직하중의 영향)

  • Minseok Park;Yunbyeong Chae;Chul-Young Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.22-29
    • /
    • 2023
  • In the evaluation of seismic performance for structural materials and components, the loading rate and axial force can have a significant impact. Due to time-delay effects between input and output displacements, It is difficult to apply high-rate displacement in cyclic tests and hybrid simulations. Additionally, the difficulty of maintaining a consistent vertical load in the presence of lateral displacement has limited fast and real-time tests performed while maintaining a constant vertical load. In this study, slow, fast cyclic tests and real-time hybrid simulations were conducted to investigate the rate dependency and the influence of vertical loads of Isolation Bearing. In the experiment, the FLB System including an Adaptive Time Series (ATS) compensation and a state estimator was constructed for real-time control of displacement and vertical load. It was found that the vertical load from the superstructure and loading rate can have a significant impact on the strength of the seismic isolation bearing and its behavior during an earthquake. When conducting experiments for seismic performance evaluation, they must be implemented to be similar to reality. This study demonstrates the excellent performance of the system built and used for seismic performance evaluation and enables accurate and efficient seismic performance evaluation.