• Title/Summary/Keyword: Real-time driving

Search Result 684, Processing Time 0.024 seconds

A Study on Development of Internet Based Power Management System Using a Microprocessor (마이크로프로세서를 이용한 인터넷기반 전력관리시스템 개발에 관한 연구)

  • 천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.746-753
    • /
    • 2004
  • In this paper, the Power Management System(PMS) which based on a decision making system according to power strategy is proposed and implemented. PMS is designed to have functions of power monitoring. controlling, synchronizing load sharing and monitoring of driving engine, etc. PMS consists of the internet communication system(ICS). Remote Management System(RMS) and Sensor Driver System (SDS) ICS transmits the monitoring and supervisory data via Internet to Remote Management System(RMS) in real-time SDS detects various power system data on local generator and utility via I/O interface system. I/O interface system receives various status data and outputs control signals. Implemented PMS is tested with dummy signal to verify proposed functions and shows good results. For future study implemented PMS will be tested under real load condition to merchandize.

Performance Evaluation of V2X Communication System Under a High-Speed Driving (고속 주행 환경에서의 V2X 통신 성능 측정 시스템)

  • Kang, Bo-young;Bae, Jeongkyu;Seo, Woo-Chang;Park, Jong Woo;Yang, EunJu;Seo, Dae-Wha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1069-1076
    • /
    • 2017
  • C-ITS(Cooperative-Intelligent Transportation System) provides services that require strict real-time such as forward collision warning, road safety service and emergency stop. WAVE(Wireless Access in Vehicular Environments), a core technology of C-ITS, is a technology designed for high-speed driving. However, in order to provide stable communication service by applying to real road environment, various performance tests of real vehicular environment are required. In the real road environment, WAVE communication performance is influenced by the surrounding environment such as moving vehicle, road shape and topography. Especially, when the vehicle is moving at high speed, the traveling position according to the speed of the vehicle, The surrounding environment changes rapidly. Such changes are factors affecting the communication performance, therefore a system and methods for analyzing them are needed. In this paper, we propose the configuration and test method of an effective performance evaluation system under high-speed driving and describe the results of analyzing the communication performance based on the data measured through the actual vehicle test.

Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface (시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어)

  • Lee, Chang-Ro;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.

What are Legible Korean Font Sizes within In-Vehicle Information Systems?

  • Kim, Huhn;Park, Soo-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.397-406
    • /
    • 2012
  • Objective: The aim of this study is to determine legible Korean font sizes within in-vehicle information systems(IVISs) in diving conditions. Background: Font legibility within IVISs is one of important causes on its' safe operations during driving. Several researches proposed some guidelines on the legible English font sizes within IVISs. On the contrary, appropriate Korean font sizes have been hardly known in spite of the typological differences between English and Korean. Therefore, more systematic researches for improving the legibility on Korean font size within IVISs have been required. Method: In this study, an experiment was performed with the following experimental factors: the existence of vibration, the color contrasts(white on black, black on white), the font types(HDR, CubeR, Gothic), and the font sizes(6, 8, 10, 12, 14, 16, 18, 20, 22, 24pt). To fit the experimental conditions into real driving environments, the illuminance was controlled to 15lx by using LED lamp and the distance between IVIS and participants was kept to 70cm. Moreover, all participants took the shutter glasses for employing well-known occlusion techniques. Results: The experimental results showed that 'HDR' and 'Non-vibration + Black on white' group took the shortest response time, and decreasing slopes of the response time with increasing font sizes were slowing down at 14pt then flattened out at 22pt regardless of the existence of vibration and color contrasts. Conclusion: The minimum size for legible Korean font would be about 14pt(5.47mm) and the optimum size would be about 22pt(8.59mm). Application: The guideline on the Korean font sizes from this study will be applied to design an IVIS in the future.

Lumped Track Modeling for Estimating Traction Force of Vecna BEAR Type Robot (Vecna BEAR 형 로봇의 견인력 추정을 위한 Lumped 궤도 모델링)

  • Kim, Tae Yun;Jung, Samuel;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.275-282
    • /
    • 2015
  • Recently, Vecna BEAR type robot to save injured individuals from inaccessible areas has been developed to minimize the loss of life. Because this robot is driven on rough terrain, there is a risk of rollover and vibration, which could impact the injured. In order to guarantee its stability, an algorithm is required that can estimate the speed limits for various environments in real time. Therefore, a dynamic model for real-time analysis is needed for this algorithm. Because the tracks used as the driving component of Vecna BEAR type robot consist of many parts, it is impossible to analyze the multibody tracks in real time. Thus, a lumped track model that satisfies the requirements of a short computation time and adequate accuracy is required. This study performed lumped track modeling, and the traction force was verified using RecurDyn, which is a dynamic commercial program.

Efficient Implementation of FMCW Radar Signal Processing Parts Using Low Cost DSP (저가형 DSP를 사용하는 FMCW 레이더 신호처리부의 효율적 구현 방안)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.707-714
    • /
    • 2016
  • Active driving safety systems for vehicle, such as the front collision avoidance, lane departure warning, and lane change assistance, have been popular to be adopted to the compact car. For improving performance and competitive cost, FMCW radar has been researched to adopt a phased array or a multi-beam antenna, and to integrate the front and the side radar. In this paper we propose several efficient methods to implement the signal processing module of FMCW radar system using low cost DSP. The pulse width modulation (PWM) based analog conversion, the approximation of time-eating functions, and the adoption of vector-based computation, etc, are proposed and implemented. The implemented signal processing board shows the real-time performance of 1.4ms pulse repetition interval (PRI) with 1024pt-FFT. In real road we verify the radar performance under real-time constraints of 10Hz update time.

Development of Message Broker-Based Real-Time Control Method for Road Traffic Safety Facilities Equipment and Devices Integrated Management System

  • JeongHo Kho;Eum Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.195-209
    • /
    • 2024
  • The current road traffic signal controller developed in the 1990s has limitations in flexibility and scalability due to power supply problems, various communication methods, and hierarchical black box structures for various equipment and devices installed to improve traffic safety for road users and autonomous cooperative driving. In this paper, we designed a road traffic safety facilities equipment and devices integrated management system that can cope with the rapidly changing future traffic environment by solving the using direct current(DC) and power supply problem through the power over ethernet(PoE) technology and centralized data-driven control through message broker technology. In addition, a data-driven real-time control method for road traffic safety facilities equipment and devices operating based on time series data was implemented and verified.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

A Study on fusion design development direction of the Flexible display base (플렉서블 디스플레이 기반의 융합형 디자인개발에 관한 연구 -Head-Up Display 가상시나리오 구현을 중심으로-)

  • Kim, Hwoi-Kwang
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.399-405
    • /
    • 2016
  • Head-Up Display, an information-providing display, is a device that provides necessary information through a vehicle window for a driver when driving, with which the driver secures the visibility and acquires information necessary for driving. Head-up displays in early days were mostly installed in imported vehicles but increasingly, being installed in medium and large-sized domestic vehicles, they secures convenience of driving and information acquirement. The information display element of each of currently released brand cars not only has limits in consistency and in displaying interface but also reveals the limitation of a way to apply GUI, being applied to dot reflective form in terms of the technology type. Accordingly, this study draws real time information element described as necessary during driving through case survey and analysis, and aims to provide a user with new GUI guideline through transparent display technology recently developed based on results analyzed with priority of POI(Point of Interest) information.

On-Road Driving Performance Analysis of Diesel-Hybrid Bus in Daegu Metropolitan Area (대구지역 디젤하이브리드 버스의 실도로 주행 성능 분석)

  • Kim, Hyunjun;Chun, Bongsu;Han, Manbae;Han, Moonsik;Kim, Yongrae;Lee, Yonggyu;Choi, Kyonam;Jeong, Dongsoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • In this study we analyzed the on-road driving performance of two parallel-type diesel-hybrid buses which have been driven in Daegu metropolitan area. A real-time on-board data logger was facilitated to measure the vehicle information such as vehicle speed, idle stop, state of charge of battery, and engine operating conditions. These diesel-hybrid buses ran as a commuter at Daegu Exco area and Dalsung industrial complex. The driving pattern in Exco area comprised more frequent idle stop and relatively lower speed than at Dalsung area, where comprised no idle stop. Due to those different driving patterns, the fuel economy at Dalsung showed $3.7\;km/{\ell}$, which is about 8% higher than that of Exco. The main causes of this come from the higher portion of regenerative braking and higher speed which moves to the operating points of diesel engine with a lower fuel consumption.