• Title/Summary/Keyword: Real-time driving

Search Result 684, Processing Time 0.028 seconds

Real-time Dangerous Driving Behavior Analysis Utilizing the Digital Tachograph and Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we propose the assistance method to enable safe driving through analysis of dangerous driving behavior using real-time alarm by vehicle speed, azimuth data and smartphone. For this method, smartphone is receiving driving data from digital tachograph using communication. Safe driving habit is a very important issue to commercial vehicle because that driver's long time driving than other vehicle type driver. Existing methods are very inefficient to improve immediately dangerous driving habits during driving because proceed driving behavior analysis after the vehicle operation. We propose the new safe driving assistance method that can prevent traffic accidents by real-time and improve the driver's wrong driving habits through real-time dangerous driving behavior analysis and notification the result to the driver. We have confirmed that the method in this paper will help to improve driving habits and can be applied through the proposed method implementation and simulation experiment.

Implementation of Real-time Dangerous Driving Behavior Analysis Utilizing the Digital Tachograph (디지털 운행기록장치를 활용한 실시간 위험운전행동분석 구현)

  • Kim, Yoo-Won;Kang, Joon-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • In this paper, we proposed the method that enabling warning through real-time analysis of dangerous driving behavior, improving driving habits and safe driving using the digital tachograph. Most of traffic accidents and green drive are closely related of driving habits. These wrong driving habits need to be improved by the real-time analysis, warning and automated method of driving habits. We confirmed the proposed that the method will help support eco-driving, safe driving through real-time analysis of driving behavior and warning through the method implementation and experiment.

PC-Based Real-Time Driving Simulation (PC 베이스의 실시간 차량 시뮬레이션)

  • 조준희;최동찬;유승철;이운성
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.192-197
    • /
    • 2000
  • Real-time driving simulation is a comprehensive technology that can be applied effectively to vehicle and traffic safety improvement, by reproducing various driving conditions and situations realistically in a safe and controlled environment. This paper describes PC-based real-time driving simulation technology in terms of design factors and simulation components. It also introduces Kookmin University Driving Simulators developed based on these considerations, which have been applied effectively to ABS HILS and a human factor study concerning sudden acceleration accident reconstruction.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

An Adaptive ROI Decision for Real-time Performance in an Autonomous Driving Perception Module (자율주행 인지 모듈의 실시간 성능을 위한 적응형 관심 영역 판단)

  • Lee, Ayoung;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.20-25
    • /
    • 2022
  • This paper represents an adaptive Region of Interest (ROI) decision for real-time performance in an autonomous driving perception module. Since the whole automated driving system consists of numerous modules and subdivisions of module occur, it is necessary to consider the characteristics, complexity, and limitations of each module. Furthermore, Light Detection And Ranging (Lidar) sensors require a considerable amount of time. In view of these limitations, division of submodule is inevitable to represent high real-time performance for stable system. This paper proposes ROI to reduce the number of data respect to computation time. ROI is set by a road's design speed and the corresponding ROI is applied differently to each vehicle considering its speed. The simulation model is constructed by ROS, and overall data analysis is conducted by Matlab. The algorithm is validated using real-time driving data in urban environment, and the result shows that ROI provides low computational costs.

Designing Real-time Observation System to Evaluate Driving Pattern through Eye Tracker

  • Oberlin, Kwekam Tchomdji Luther.;Jung, Euitay
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.421-431
    • /
    • 2022
  • The purpose of this research is to determine the point of fixation of the driver during the process of driving. Based on the results of this research, the driving instructor can make a judgement on what the trainee stare on the most. Traffic accidents have become a serious concern in modern society. Especially, the traffic accidents among unskilled and elderly drivers are at issue. A driver should put attention on the vehicles around, traffic signs, passersby, passengers, road situation and its dashboard. An eye-tracking-based application was developed to analyze the driver's gaze behavior. It is a prototype for real-time eye tracking for monitoring the point of interest of drivers in driving practice. In this study, the driver's attention was measured by capturing the movement of the eyes in real road driving conditions using these tools. As a result, dwelling duration time, entry time and the average of fixation of the eye gaze are leading parameters that could help us prove the idea of this study.

A Dynamic Modeling of 6×6 Skid Type Vehicle for Real Time Traversability Analysis over Curved Driving Path (곡선주행 실시간 주행성 분석을 위한 스키드 차량의 동역학 모델링)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.359-364
    • /
    • 2012
  • Real-Time Traversability should be analyzed from the equiped sensors' data in real time for autonomous outdoor navigation. However, it is difficult to find out such traversability that considers the terrain roughness and the vehicle dynamics especially in case of skid type vehicle. The traversability based on real time dynamic analysis was proposed to solve such problem but in navigation with strait driving path. To adapt the method into the navigation with curved driving path, a path following controller should be incorporated into the dynamic model even though it cause the real time problem. In this paper, a dynamic model is proposed to solve the real time problem in the traversability analysis based on real time dynamic simualtion. The dynamic model contains the control dummy which is connected to the vehicle body with a universal joint to follow the curved path without controller. Simulation and experimental results on $6{\times}6$ articulated unmanned ground vehicle demonstrate the method's effectiveness and applicability into the traversability analysis on terrain with bumps.

Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study (차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발)

  • 이승준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

A derivation of real-time simulation model on the large-structure driving system and its application to the analysis of system interface characteristics (대형구조물 구동계통 실시간 시뮬레이션 모델 유도 및 연동 특성 분석에의 응용)

  • Kim, Jae-Hun;Choi, Young-Ho;Yoo, Woong-Jae;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A simulation model is developed to analyze the large-structure driving system and its integrated behavior in the whole weapon system. It models every component in the driving system such as mechanical and electrical characteristics, and it is programmed by simulation language in a way which strongly reflects the system's real time dynamics and reduces computation time as well. A useful parameter identification method is proposed, and it is tuned on the given physical system. The model is validated through comparing to real test, and it is applied to analysis and prediction of integrated system functions relating to the fire control system.

  • PDF