• 제목/요약/키워드: Real-time data fusion

검색결과 128건 처리시간 0.032초

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제40권1호
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Two Overarching Teleconnection Mechanisms Affecting the Prediction of the 2018 Korean Heat Waves

  • Wie, Jieun;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제43권4호
    • /
    • pp.511-519
    • /
    • 2022
  • Given the significant social and economic impact caused by heat waves, there is a pressing need to predict them with high accuracy and reliability. In this study, we analyzed the real-time forecast data from six models constituting the Subseasonal-to-Seasonal (S2S) prediction project, to elucidate the key mechanisms contributing to the prediction of the recent record-breaking Korean heat wave event in 2018. Weekly anomalies were first obtained by subtracting the 2017-2020 mean values for both S2S model simulations and observations. By comparing four Korean heat-wave-related indices from S2S models to the observed data, we aimed to identify key climate processes affecting prediction accuracy. The results showed that superior performance at predicting the 2018 Korean heat wave was achieved when the model showed better prediction performance for the anomalous anticyclonic activity in the upper troposphere of Eastern Europe and the cyclonic circulation over the Western North Pacific (WNP) region compared to the observed data. Furthermore, the development of upper-tropospheric anticyclones in Eastern Europe was closely related to global warming and the occurrence of La Niña events. The anomalous cyclonic flow in the WNP region coincided with enhancements in Madden-Julian oscillation phases 4-6. Our results indicate that, for the accurate prediction of heat waves, such as the 2018 Korean heat wave, it is imperative for the S2S models to realistically reproduce the variabilities over the Eastern Europe and WNP regions.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

비행시험용 실시간 데이터 융합필터 성능분석 (Performance Analysis on the Real-time Data Fusion Filter for Flight Test)

  • 원종훈;이자성;이용재;김흥범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2034-2036
    • /
    • 2003
  • 본 논문에서는 21차 상태변수를 갖는 칼만필터 형태의 비행시험용 데이터 융합필터 알고리듬의 성능을 분석하였다. 실측 데이터에 대한 분석을 통하여 상태변수 선택의 적절성을 검증하였다. 공분산 해석기법을 통하여 기 개발된 데이터 융합 알고리듬의 추정값의 오차범위를 구하였다. 수치적인 성능값을 구하고자 간단한 시뮬레이터를 설계하였다. 20회 몬테칼로 시뮬레이션과 공분산 해석결과에 기반하여 필터 계수를 튜닝하였고 이를 기설계된 분산형 칼만필터에 적용하였다. 실시간 소프트웨어 모듈의 수행결과를 동일한 실측데이터를 적용한 후처리 실험결과와 비교하였다.

  • PDF

HMD 환경에서 사용자 손의 자세 추정을 위한 MLP 기반 마커 분류 (Marker Classification by Sensor Fusion for Hand Pose Tracking in HMD Environments using MLP)

  • 록콩부;최은석;유범재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.920-922
    • /
    • 2018
  • This paper describes a method to classify simple circular artificial markers on surfaces of a box on the back of hand to detect the pose of user's hand for VR/AR applications by using a Leap Motion camera and two IMU sensors. One IMU sensor is located in the box and the other IMU sensor is fixed with the camera. Multi-layer Perceptron (MLP) algorithm is adopted to classify artificial markers on each surface tracked by the camera using IMU sensor data. It is experimented successfully in real-time, 70Hz, under PC environments.

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

지하역사 내 미세먼지 실시간 모니터링을 위한 광산란법 보정 (Compensation of Light Scattering Method for Real-Time Monitoring of Particulate Matters in Subway Stations)

  • 김서진;강호성;손윤석;윤상렬;김조천;김규식;김인원
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.533-542
    • /
    • 2010
  • The $PM_{10}$ concentrations in the underground should be monitored for the health of commuters on the underground subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. As for the measurement of $PM_{10}$ concentrations, instruments based on $\beta$-ray absorption method and gravimetric methods are being used. But the instruments using gravimetric method give us 20-hour-average data and the $\beta$-ray instruments can measure the $PM_{10}$ concentration every one hour. In order to keep the $PM_{10}$ concentrations under a healthy condition, the air quality of the underground platform and tunnels should be monitored and controlled continuously. The $PM_{10}$ instruments using light scattering method can measure the $PM_{10}$ concentrations every less than one minute. However, the reliability of the instruments using light scattering method is still not proved. The purpose of this work is to study the reliability of the instruments using light scattering method to measure the $PM_{10}$ concentrations continuously in the underground platforms. One instrument using $\beta$-ray absorption method and two different instruments using light scattering method (LSM1, LSM2) were placed at the platform of the Jegi station of Seoul metro line Number 1 for 10 days. The correlation between the $\beta$-ray instrument and the LSM2 ($r^2$=0.732) was higher than that between the $\beta$-ray instrument and the LSM1 ($r^2$=0.393). Thus the LSM2 was chosen for further analysis. Three different regression analysis methods were tested: Linear regression analysis, Nonlinear regression analysis and Orthogonal regression analysis. When the instruments using light scattering method were used, the data measured these instruments have to be converted to actual $PM_{10}$ concentrations using some factors. With these analyses, the factors could be calculated successfully as linear and nonlinear forms with respect to the data. And the orthogonal regression analysis was performed better than the ordinary least squares method by 28.45% reduction of RMSE. These findings propose that the instruments using light scattering method light scattering method can be used to measure and control the $PM_{10}$ concentrations of the underground subway stations.

스마트폰 센서를 이용한 PDR과 칼만필터 기반 개선된 실내 위치 측위 기법 (Enhanced Indoor Localization Scheme Based on Pedestrian Dead Reckoning and Kalman Filter Fusion with Smartphone Sensors)

  • 하런자밀;나임 이크발;무라드 알리 칸;시이드 세흐르야 알리 나크비;김도현
    • 사물인터넷융복합논문지
    • /
    • 제10권4호
    • /
    • pp.101-108
    • /
    • 2024
  • 실내 위치 측위는 대형 건물에서 내비게이션부터 비상 대응까지 다양한 애플리케이션이다. 본 논문에서는 스마트폰 센서를 이용하고 신경망 기반 동작 인식, 칼만 필터 기반 오류 수정, 다중 센서 데이터 융합을 통합한 향상된 PDR(Pedestrian Dead Reckoning) 기반 보행자 실내 위치 측위 기법을 제시한다. 제안된 기법은 가속도계, 자력계, 자이로스코프, 기압계의 데이터를 활용하여 사용자의 위치와 방향을 정확하게 측위하며, 신경망은 센서 데이터를 처리하여 동작 모드를 분류하고 보폭과 방향 계산에 대한 실시간 조정을 제공한다. 칼만 필터는 이러한 추정치를 더욱 구체화하여 누적 오류와 드리프트를 줄이며, 대형 건물의 여러 층에서 스마트폰을 사용하여 수집한 실험 결과는 수직 이동과 진행 방향 변화를 정확하게 추적하는 능력을 보여준다. 성능 비교 분석 결과에서 제안된 CNN-LSTM 모델은 각도예측에서 기존 CNN 및 Deep CNN 모델보다 성능이 뛰어난 것으로 나타났으며. 또한 기압 데이터를 통합하여 정확한 바닥 수준 감지가 가능해 다층 환경에서 시스템의 견고성을 향상시켰으며, 이 제안된 접근 방식은 실내 위치 파악의 정확성과 신뢰성을 크게 향상시켜 실제 응용 분야에서 활용 가능성이 높다고 판단된다.

레이저센서 데이터융합기반의 복수 휴먼보폭 인식과 추적 (Human Legs Stride Recognition and Tracking based on the Laser Scanner Sensor Data)

  • 진태석
    • 한국정보통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.247-253
    • /
    • 2019
  • 본 논문에서는 레이저 센서 시스템을 이용한 이동중의 사람들을 실시간으로 추종하는 새로운 방법을 제시하였다. 제시한 방법은 $r-{\theta}$로 표현되는 센서데이터를 x-y좌표로 표현되는 2차원 공간으로 표현이 가능하다. 이러한 이동중인 사람들에 대한 정보는 보행패턴과 입력 센서데이터 값에 의해서 이동중인 사람의 특징값을 이용하여 적용하였다. 레이저 센서 기반 사람 추적 방법은 기존의 영상기반의 얼굴인식 방법보다 간단하면서도 이점을 가지고 있다. 제안방법에선 이동궤적알고리즘 기반으로 이동중인 사람의 발목부위를 계측하였도록 하였다. 게다가 제안된 추적 시스템은 중첩된 상황에서도 사람을 강건하게 추적할 수 있도록 HMM 방법을 적용하였다. 적용한 방법을 검증하기 위하여 실제 시스템을 적용한 실험결과를 제시하였다.

IP카메라기반의 운동선수 코칭용 원격 영상모니터링 시스템 (Implement remote video monitoring system to sports coaching for athletes Based of IP-Camera)

  • 박천일;김경태;김상기;강준상;서승범;이정훈;이승연;임윤식;유영식;김준원;이종훈;이종성;이선희;차재상
    • 한국위성정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.6-11
    • /
    • 2013
  • 최근 스포츠과학은 운동선수들의 경기력 향상을 위해 다양한 시도가 이루어지고 있다. 기존의 방법 중에 경기 후 선수들의 움직임 및 경기결과에 대한 데이터를 수집하고 분석하여 이를 토대로 취약점등을 보안하고 개선하는 방법이 많이 활용되고 있다. 하지만 이와 같은 방법은 경기결과를 바탕으로 데이터를 분석하기 때문에 실제경기 및 연습중에 경기의 흐름 및 선수들의 움직임 등을 실시간으로 파악할 수 없는 한계가 존재한다. 이에 IT기술을 활용한 경기력 향상을 위한 경기중에 실시간으로 관리감독이 가능한 IP카메라기반의 운동선수 코칭용 원격 영상모니터링 시스템을 제안하였다.