• 제목/요약/키워드: Real-time damage assessment

검색결과 66건 처리시간 0.022초

토목 구조물의 PZT Impedance 기반 손상추정기법 (PZT Impedance-based Damage Detection for Civil Infrastructures)

  • S. H. Park;Y. Roh;C. B. Yun;J. H. Yi
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.373-380
    • /
    • 2004
  • This paper presents the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The impedance-based damage detection method is based on monitoring the changes in the electrical impedance. Those changes in the electrical impedance are due to the electro-mechanical coupling property of the piezoelectric material and structure. An effective integrated structural health monitoring system must include a statistical process of damage detection that is automated and real time assessment of damage in the structure. Once measured, damage sensitive features from this impedance change can be statistically quantified for various damage cases. The results of the experimental study on three kinds of structural members show that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies. The root mean square (RMS) deviations of impedance functions between before and after damages were also considered as a damage indicator. The subsequent statistical methods using the impedance signature of the PZT sensors were investigated.

  • PDF

풍수해 모니터링을 위한 UAV 적용성 분석 (Applicability Analysis of UAV for Storm and Flood Monitoring)

  • 김민규;정갑용;김종배;윤희천
    • 한국측량학회지
    • /
    • 제28권6호
    • /
    • pp.655-662
    • /
    • 2010
  • 최근 지구 온난화와 이상기후로 인하여 자연재해로 인한 피해가 지속적으로 발생하고 있으며, 이로 인한 피해가 점차 대형화되고 있다. 본 연구는 기존 기술에 비해 신속하고 경제적이면서, 다양한 재난 재해에 활용이 가능한 UAV(Unmanned Aircraft Vehicle)를 통해 자연재해에 의한 피해를 효과적으로 대비, 대응 및 복구할 수 있는 활용모델을 제시하기 위한 선행연구로 기존 재해관련 연구사례와 국내 재해관련 규정 분석을 바탕으로 재해모니터링을 위한 UAV의 적용성을 분석하였다. 향후, 자연재해 모니터링을 위한 UAV의 활용은 재난 재해 대응관리 및 피해조사를위한실시간공중모니터링을가능하게 함으로써 재난 재해 대응 및 관리의 효율성을 향상시킬 것이다.

Comparative analysis of fatigue assessment considering hydroelastic response using numerical and experimental approach

  • Kim, Beom-il;Jung, Byung-hoon
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.355-365
    • /
    • 2020
  • In this study, considering the hydroelastic response represented by the springing and whipping phenomena, we propose a method of estimating the fatigue damage in the longitudinal connections of ships. First, we screened the design sea states using a load transfer function based on the frequency domain. We then conducted a time domain fluid-structure interaction (FSI) analysis using WISH-FLEX, an in-house code based on the weakly nonlinear approach. To obtain an effective and robust analytical result of the hydroelastic response, we also conducted an experimental model test with a 1/50-scale backbone-based model of a ship, and compared the experimental results with those obtained from the FSI analysis. Then, by combining the results obtained from the hydroelastic response with those obtained from the numerical fatigue analysis, we developed a fatigue damage estimation method. Finally, to demonstrate the effectiveness of the developed method, we evaluated the fatigue strength for the longitudinal connections of the real ship and compared it with the results obtained from the model tests.

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

콘크리트 표면차수벽형 석괴댐의 지진 취약도 평가 (Evaluation of Seismic Fragility of Concrete Faced Rockfill Dam)

  • 백종민;박두희;윤지남;최병한
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.103-108
    • /
    • 2018
  • 본 연구에서는 지반진동 강도에 따른 콘크리트 표면차수벽 석괴댐(CFRD)의 확률론적 피해예측을 위하여 취약도 함수를 개발하였다. 댐의 손상평가에 널리 사용되는 지표인 댐마루 침하량을 손상지수로 사용하여 경미(Minor), 중간(Moderate), 심각(Severe) 손상수준을 정의하였다. 침하량은 댐 표준단면에 대한 비선형 동적 수치해석을 통하여 계산하였다. 수치해석 모델은 원심모형시험결과와 비교하여 정확성을 검증하였다. 취약도 곡선은 대수정규분포함수로 나타내어 최대지반가속도를 기준으로 도출하였다. 본 연구에서 도출된 취약도 곡선은 댐의 실시간 피해예측에 활용될 수 있을 것으로 판단된다.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

화재이력에 따른 터널구조물 시공재료의 화재손상 평가 (Assessment of Fire-induced Damage to Tunnel Structural Members at Different Fire Scenarios)

  • 최순욱;장수호;권종욱;배규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.960-969
    • /
    • 2006
  • In this study, a series of fire tests was carried out to evaluate fire-induced damage to structural members in tunnels. From the tests, the loss amount of concrete materials by the RWS fire scenario was slightly bigger than by the RABT fire scenario. Especially under the RWS fire scenario where the maximum temperature is over 1,200, the loss of concrete materials was mainly induced by melting. Generally, the loss of materials in reinforced concrete was slightly smaller than that in unreinforced concrete. Depending upon an applied fire scenario, fire-induced damage to shotcrete was quite different. From the real-time investigation of a specimen surface by a digital camcorder, it was proved that the material loss under the RABT fire scenario was mainly induced by spalling. However, it was also revealed that although fire-induced damage in the initial heating stage under the RWS was so close to that under the RABT, the material loss under the RWS at the later stage after 50 minutes elapsed since fire initiation was induced not by spalling but by melting.

  • PDF

비파괴계측에 의한 사장교의 공용간 상시안전감시시스템 (The Real-time Health Monitoring System of a Cable-stayed Bridge Based on Non-destruction Measurement)

  • 최만용;강경구;김종우
    • 비파괴검사학회지
    • /
    • 제22권3호
    • /
    • pp.239-245
    • /
    • 2002
  • 현재까지 다양한 토목구조물들은 여러 가지 요인에 의한 노후화와 축척된 손상에도 불구하고 별다른 조치 없이 계속해서 사용되고 있었다. 따라서, 이러한 구조물들의 효율적인 유지관리를 유해 계측관리가 중요시되었다. 이에 본 논문에서는 비파괴계측에 의해 사장교의 실시간 계측모니터링시스템을 개발하고자 하며 이를 통해 교량의 안전관리를 하고자 하였다. 계측모니터링시스템은 교량의 유지관리를 도모하고, 교량 관리의 경제적 비용을 줄이게 되며 사장교의 새로운 설계 및 분석방법을 개발하는데 중요한 데이터를 제공할 것이다.

High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2061-2078
    • /
    • 2006
  • The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500$^{\circ}C$ and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated.