• Title/Summary/Keyword: Real-time collision avoidance

Search Result 93, Processing Time 0.032 seconds

Obstacle Avoidance Using Velocity Dipole Field Method

  • Munasinghe, Sudath R.;Oh, Chang-Mok;Lee, Ju-Jang;Khatib, Oussama
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1657-1661
    • /
    • 2005
  • The velocity dipole field method is presented for real-time collision avoidance of mobile robots. The direction of motion of the obstacle is used as the axis of the dipole field, and the speed of the obstacle is used to proportionally strengthen the dipole field. The elliptical field lines of the dipole field are useful to skillfully guide the robot around obstacles, quite similar to the way humans avoid moving obstacles. Field modulation coefficient is also introduced to weaken the field effect as the obstacle recedes. The real-time algorithm of the velocity dipole field has been devised and experimentally tested on the robot soccer test-bed. The results show the capability of the new real-time collision avoidance strategy and how it can overcome the weaknesses in the conventional potential field method. The new method makes an explicit and proactive action of collision avoidance, unlike the conventional method, which forces the robot merely away from the obstacle aimlessly. The proposed method delivers greater capability with no considerable computational overhead

  • PDF

A New Analytical Representation to Robot Path Generation with Collision Avoidance through the Use of the Collision Map

  • Park Seung-Hwan;Lee Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • A new method in robot path generation is presented using an analysis of the characteristics of multi-robot collision avoidance. The research is based on the concept of the collision map, where the collision between two robots is presented by a collision region and a crossing curve TLVSTC (traveled length versus servo time curve). Analytic collision avoidance is considered by translating the collision region in the collision map. The 4 different translations of collision regions correspond to the 4 parallel movements of the actual original robot path in the real world. This analysis is applied to path modifications where the analysis of collision characteristics is crucial and the resultant path for collision avoidance is generated. Also, the correlations between the translations of the collision region and robot paths are clarified by analyzing the collision/non-collision areas. The influence of the changes of robot velocity is investigated analytically in view of collision avoidance as an example.

Development of a Real-Time Collision Avoidance Algorithm for eXperimental Autonomous Vehicle (무인자율차량의 실시간 충돌 회피 알고리즘 개발)

  • Choe, Tok-Son
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1302-1308
    • /
    • 2007
  • In this paper, a real-time collision avoidance algorithm is proposed for experimental Autonomous Vehicle(XAV). To ensure real-time implementation, a virtual potential field is calculated in one dimensional space. The attractive force is generated by the steering command either transmitted in the remote control station or calculated in the Autonomous Navigation System(ANS) of the XAV. The repulsive force is generated by obstacle information obtained from Laser Range Finder(LRF) mounted on the XAV. Using these attractive and repulsive forces, modified steering, velocity and emergency stop commands are created to avoid obstacles and follow a planned path. The suggested algorithm is inserted as one component in the XAV system. Through various real experiments and technical demonstration using the XAV, the usefulness and practicality of the proposed algorithm are verified.

A Study on Efficient Infrastructure Architecture for Intersection Collision Avoidance Associated with Sensor Networks

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.657-666
    • /
    • 2008
  • The intersection collision avoidance service among various telematics application services is regarded as one of the most critical services with regard to safety. In such safety applications, real-time, correct transmission of service is required. In this paper, we study on efficient infrastructure architecture for intersection collision avoidance using a cooperative mechanism between vehicles and wireless infrastructure. In particular, we propose an infrastructure, called CISN (Cooperative Infrastructure associated with Sensor Networks), in which proper numbers of sensor nodes are deployed on each road, surrounding the intersection. In the proposed architecture, overall service performance is influenced by various parameters consisting of the infrastructure, such as the number of deployed sensor nodes, radio range and broadcast interval of base station, and so on. In order to test the feasibility of the CISN model in advance, and to evaluate the correctness and real-time transmission ability, an intersection sensor deployment simulator is developed. Through various simulations on several environments, we identify optimal points of some critical parameters to build the most desirable CISN.

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

Self-Collision Avoidance using Configuration Space Approach for Redundant Manipulators (Configuration Space 접근법을 이용한 여유 자유도 로봇의 자기 충돌 회피)

  • 문재성;정완균;염영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.321-324
    • /
    • 2003
  • There are two steps to solve the self-collision avoidance problems for redundant manipulators. First, all links are regarded as cylinders. and then the collisions should be checked among all pairs of the links. Between two cylinders. we can get the collision information derived from the concept or configuration space obstacle in real time. Therefore. it is possible to detect the links where collisions are likely in real time by setting the risk radius which is larger than actual radius. Second. the configuration control points (CCP) should be placed at the ends of the detected links. A cost function is the sum of the distances between the CCPs. To maximize the cost function means the links go far away each other without self-collisions.

  • PDF

A DESIGN OF INTERSECTION COLLISION AVOIDANCE SYSTEM BASED ON UBIQUITOUS SENSOR NETWORKS

  • Kim, Min-Soo;Lee, Eun-Kyu;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.749-752
    • /
    • 2005
  • In this paper, we introduce an Intersection Collision Avoidance (ICA) system as a convergence example of Telematics and USN technology and show several requirements for the ICA system. Also, we propose a system design that satisfies the requirements of reliable vehicular data acquisition, real-time data transmission, and effective intersection collision prediction. The ICA system consists of vehicles, sensor nodes and a base station that can provide drivers with a reliable ICA service. Then, we propose several technological solutions needed when implementing the ICA system. Those are about sensor nodes deployment, vehicular information transmission, vehicular location data acquisition, and intersection collision prediction methods. We expect this system will be a good case study applied to real Telematics application based on USN technology.

  • PDF

A Probabilistic Algorithm for Multi-aircraft Collision Detection and Resolution in 3-D

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This paper presents a real-time algorithm for collision detection, collision avoidance and guidance. Three-dimensional point-mass aircraft models are used. For collision detection, conflict probability is calculated by using the Monte-Carlo Simulation. Time at the closest point of approach(CPA) and distance at CPA are needed to determine the collision probability, being compared to certain threshold values. For collision avoidance, one of possible maneuver options is chosen to minimize the collision probability. For guidance to a designated way-point, proportional navigation guidance law is used. Two scenarios on encounter situation are studied to demonstrate the performance of proposed algorithm.

Obstacle Awareness and Collision Avoidance Radar Sensor System for Smart UAV

  • Kwag, Young K.;Hwang, Kwang Y.;Kang, Jung W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.97-109
    • /
    • 2005
  • In this paper, the critical requirement for obstacle awareness and avoidance is assessed with the compliance of the equivalent level of safety regulation, and then the collision avoidance sensor system is presented with the key design parameters for the requirement of the smart unmanned aerial vehicle in low-altitude flight. Based on the assessment of various sensors, small-sized radar sensor is selected for the suitable candidate due to the real-time range and range-rate acquisition capability of the stationary and moving aircraft even under all-weather environments. Through the performance analysis for the system requirement, the conceptual design result of radar sensor model is proposed with the range detection probability and collision avoidance mode is established based on the time-to-collision, which is analyzed by collision scenario.

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.