• Title/Summary/Keyword: Real-time Sensor

Search Result 2,578, Processing Time 0.032 seconds

Development of Real-time Heart Rate Measurement Device Using Wireless Pressure Sensor (무선 압력센서를 이용한 실시간 맥박수 측정기 개발)

  • Choi, Sang-Dong;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.284-288
    • /
    • 2016
  • Among the various physiological information that could be obtained from human body, heartbeat rate is a commonly used vital sign in the clinical milieu. Photoplethysography (PPG) sensor is incorporated into many wearable healthcare devices because of its advantages such as simplicity of hardware structure and low-cost. However, healthcare device employing PPG sensor has been issued in susceptibility of light and motion artifact. In this paper, to develop the real-time heart rate measurement device that is less sensitive to the external noises, we have fabricated an ultra-small wireless LC resonant pressure sensor by MEMS process. After performance evaluation in linearity and repeatability of the MEMS pressure sensor, heartbeat waveform and rate on radial artery were obtained by using resonant frequency-pressure conversion method. The measured data using the proposed heartbeat rate measurement system was validated by comparing it with the data of an commercialized heart rate measurement device. Result of the proposed device was agreed well to that of the commercialized device. The obtained real time heartbeat wave and rate were displayed on personal mobile system by bluetooth communication.

MEMS based capacitive biosensor for real time detection of bacterial growth (실시간 박테리아 감지를 위한 정전용량방식의 MEMS 바이오센서)

  • Seo, Hye-Kyoung;Lim, Dae-Ho;Lim, Mi-Hwa;Kim, Jong-Baeg;Shin, Jeon-Soo;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.195-202
    • /
    • 2008
  • A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.

A Study of Fusing Scheme of Image and Sensing Data Using Index Method (인덱스를 이용한 동영상과 센싱 데이터 융합 방안 연구)

  • Hyun, Jin Gyu;Lee, Young Su;Kim, Do Hyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.141-146
    • /
    • 2008
  • Recently, it is studying to provide to users through internet in the SensorWeb of OGC(Open Geospatial Consortium) saving and maintaining data and image information gathered from sensor network. It is necessary to study about data convergence as binding audio and video for delivering the sensing data and image information to users with real-time system. In this article, it suggests how to convergence sensing data and moving picture collected from the sensor network using index. This program indicates both of them that collected sensing data and information identified of moving picture in the integration index and based on this program provides sensing data moving picture at the same time referencing integration index, if the user asks. To verify suggested method designing real-time multimedia service structure using sensor network and image installation and implementing Ubiquitous realtime multimedia system integrating moving picture and sensing data based on index. As a result of this program, it is confirmed providing real-time multimedia service to request information of application service using integration index collected image and sensing data from wireless sensor network and image installation suggested data convergence method.

  • PDF

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection (QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템)

  • Lee, Dae-Seok;Bhardwaj, Sachin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor Networks

  • Zhang, Xiaoli;Jin, Yongnu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1733-1751
    • /
    • 2015
  • The IEEE 802.15.4 standard not only provides a maximum of seven guaranteed time slots (GTSs) for allocation within a superframe to support time-critical traffic, but also achieves ultralow complexity, cost, and power in low-rate and short-distance wireless personal area networks (WPANs). Real-time wireless body area sensor networks (WBASNs), as a special purpose WPAN, can perfectly use the IEEE 802. 15. 4 standard for its wireless connection. In this paper, we propose an adaptive GTS allocation scheme for real-time WBASN data transmissions with different priorities in consideration of low latency, fairness, and bandwidth utilization. The proposed GTS allocation scheme combines a weight-based priority assignment algorithm with an innovative starvation avoidance scheme. Simulation results show that the proposed method significantly outperforms the existing GTS implementation for the traditional IEEE 802.15.4 in terms of average delay, contention free period bandwidth utilization, and fairness.

Tractive Force Estimation in Real-time Using Brake Gain Adaptation (브레이크 게인 적응기법을 이용한 종방향 타이어 힘의 실시간 추정)

  • ;;Karl Hedrick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.214-219
    • /
    • 2003
  • This paper includes real-time tractive force estimation method using standard vehicle sensors such as wheel speed, brake pressure, throttle position, engine speed, and transmission carrier speed sensor. Engine map, torque converter lookup table, shaft torque observer, and brake gain adaptation method are used to estimate the tractive force. To verify this estimator, measurement which uses strain-based brake torque sensor and estimation results are presented. All results was performed using a real vehicle in a real-time.

A Study on Efficient Infrastructure Architecture for Intersection Collision Avoidance Associated with Sensor Networks

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.657-666
    • /
    • 2008
  • The intersection collision avoidance service among various telematics application services is regarded as one of the most critical services with regard to safety. In such safety applications, real-time, correct transmission of service is required. In this paper, we study on efficient infrastructure architecture for intersection collision avoidance using a cooperative mechanism between vehicles and wireless infrastructure. In particular, we propose an infrastructure, called CISN (Cooperative Infrastructure associated with Sensor Networks), in which proper numbers of sensor nodes are deployed on each road, surrounding the intersection. In the proposed architecture, overall service performance is influenced by various parameters consisting of the infrastructure, such as the number of deployed sensor nodes, radio range and broadcast interval of base station, and so on. In order to test the feasibility of the CISN model in advance, and to evaluate the correctness and real-time transmission ability, an intersection sensor deployment simulator is developed. Through various simulations on several environments, we identify optimal points of some critical parameters to build the most desirable CISN.

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.