• 제목/요약/키워드: Real-time Medicine-bottle Classification

검색결과 2건 처리시간 0.018초

실시간 약통 분류를 위한 계층적 신경회로망 (Hierarchical Neural Network for Real-time Medicine-bottle Classification)

  • 김정준;김태훈;류강수;이대식;이종학;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.226-231
    • /
    • 2013
  • 의약품을 자동 포장하는 시스템에서는 캐니스터(Canister)에 해당 약을 정확히 보충할 수 있는 해당 약통과 캐니스터와의 일치 여부를 판단하는 정합 알고리즘이 필수적이다. 본 논문에서는 약화사고 방지를 위해 많은 종류의 약통을 분류하기 위한 분류 성능뿐만 아니라 실시간으로 처리할 수 있는 상 하 계층으로 구성된 계층적 신경회로망을 제안한다. 먼저 약통 정보를 나타내는 라벨 영상으로부터 다수의 저 차원 특징 벡터를 추출한다. 추출된 특징 벡터를 사용하여 하위계층의 다층 퍼셉트론(MLP, Multi-layer Perceptron) 신경회로망을 학습한다. 다음으로 학습된 MLP의 중간층 출력을 입력으로 사용하여 상위계층의 MLP를 학습한다. 100개의 약통에 대해 좌우 30도까지 회전한 영상에 대해 제안한 계층적 신경회로망의 분류 성능 시험과 실시간 연산처리 성능의 우수함을 보였다.

SIFT 기반의 약통 분류 시스템 (Medicine-Bottle Classification Algorithm Based on SIFT)

  • 박길흠;조웅호
    • 한국산업정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.77-85
    • /
    • 2014
  • 약화 사고 방지를 위한 약통 분류 알고리즘은 약통의 회전, 크기변화, 위치 이동 등의 기하학적 변화에 강인하여야 한다. 본 논문에서는 기하학적 변화에 강인한 SIFT(Scale Invariant Feature Transform)을 이용하여 약통을 실시간으로 정확하게 분류하는 알고리즘을 제안한다. 먼저, 약통 분류를 위해서 두드러진 특징으로 약통의 크기 정보인 최외곽 사각형을 이용하여 약통을 크기 별로 분류한다. 다음으로 최외곽 사각형내에서 라벨 영역을 추출하고, 회전을 고려한 관심영역을 추출한다. 그리고 추출된 관심영역에 대해 SIFT를 이용하여 약통을 분류한다. 또한 SIFT의 처리 속도를 개선하기 위하여 SIFT의 옥타브 수를 간소화하였다. 250개의 약통 영상에 대해 제안한 알고리즘의 성능을 평가한 결과, 모든 약통에 대해 정확히 분류함을 확인하였다. 또한 SIFT의 피라미드 레벨 간소화에 의해 처리 시간을 2배 이상 향상됨을 확인하였다.