• Title/Summary/Keyword: Real-time Attack Detection

Search Result 98, Processing Time 0.023 seconds

Autoencoder-Based Anomaly Detection Method for IoT Device Traffics (오토인코더 기반 IoT 디바이스 트래픽 이상징후 탐지 방법 연구)

  • Seung-A Park;Yejin Jang;Da Seul Kim;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.281-288
    • /
    • 2024
  • The sixth generation(6G) wireless communication technology is advancing toward ultra-high speed, ultra-high bandwidth, and hyper-connectivity. With the development of communication technologies, the formation of a hyper-connected society is rapidly accelerating, expanding from the IoT(Internet of Things) to the IoE(Internet of Everything). However, at the same time, security threats targeting IoT devices have become widespread, and there are concerns about security incidents such as unauthorized access and information leakage. As a result, the need for security-enhancing solutions is increasing. In this paper, we implement an autoencoder-based anomaly detection model utilizing real-time collected network traffics in respond to IoT security threats. Considering the difficulty of capturing IoT device traffic data for each attack in real IoT environments, we use an unsupervised learning-based autoencoder and implement 6 different autoencoder models based on the use of noise in the training data and the dimensions of the latent space. By comparing the model performance through experiments, we provide a performance evaluation of the anomaly detection model for detecting abnormal network traffic.

Proposal of Detection Module for Fighter Aircraft Data Modulation Attack (전투기 데이터 변조 공격행위에 대한 탐지모듈 제안)

  • Hong, Byoung-jin;Kim, Wan-ju;Kim, Ho-keun;Lim, Jae-sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.5-16
    • /
    • 2019
  • Modern state-of-the-art military aviation assets are operated with independent embedded real-time operating systems(RTOS). These embedded systems are made with a high level of information assurance. However, once the systems are introduced and installed on individual platforms for sustaining operational employment, the systems are not actively managed and as a result the platforms become exposed to serious threats. In this paper, we analyzed vulnerability factors in the processing of mission planning data and maintenance-related data for fighter aircraft. We defined the method and form of cyber attacks that modulate air data using these vulnerabilities. We then proposed a detection module for integrity detection. The designed module can preemptively respond to potential cyber threats targeting high - value aviation assets by checking and preemptively responding to malware infection during flight data processing of fighter aircraft.

An Intrusion Detection System based on the Artificial Neural Network for Real Time Detection (실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템)

  • Kim, Tae Hee;Kang, Seung Ho
    • Convergence Security Journal
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • As the cyber-attacks through the networks advance, it is difficult for the intrusion detection system based on the simple rules to detect the novel type of attacks such as Advanced Persistent Threat(APT) attack. At present, many types of research have been focused on the application of machine learning techniques to the intrusion detection system in order to detect previously unknown attacks. In the case of using the machine learning techniques, the performance of the intrusion detection system largely depends on the feature set which is used as an input to the system. Generally, more features increase the accuracy of the intrusion detection system whereas they cause a problem when fast responses are required owing to their large elapsed time. In this paper, we present a network intrusion detection system based on artificial neural network, which adopts a multi-objective genetic algorithm to satisfy the both requirements: accuracy, and fast response. The comparison between the proposing approach and previously proposed other approaches is conducted against NSL_KDD data set for the evaluation of the performance of the proposing approach.

A Solution for Timing Gap Problems on Network Intrusion Detection Systems (네트워크 침입 탐지 시스템에서의 시차 문제 해결 방안)

  • 차현철
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This paper proposes a method to reduce the timing gap which causes a type of attack to a network-based intrusion detection system. For this, an intrusion defection system is used in order to measure the round trip tin to the destination system, and the measured round trip time is used for estimation of packet's real arrival time to destination. Socket programings are used on the LAN environments to evaluate the performance of the proposed method. The test results show that an estimation method which uses the latest round trip time has the best performance, and the timing gap can be significantly reduced with small overheads.

  • PDF

Rule-Based Anomaly Detection Technique Using Roaming Honeypots for Wireless Sensor Networks

  • Gowri, Muthukrishnan;Paramasivan, Balasubramanian
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1145-1152
    • /
    • 2016
  • Because the nodes in a wireless sensor network (WSN) are mobile and the network is highly dynamic, monitoring every node at all times is impractical. As a result, an intruder can attack the network easily, thus impairing the system. Hence, detecting anomalies in the network is very essential for handling efficient and safe communication. To overcome these issues, in this paper, we propose a rule-based anomaly detection technique using roaming honeypots. Initially, the honeypots are deployed in such a way that all nodes in the network are covered by at least one honeypot. Honeypots check every new connection by letting the centralized administrator collect the information regarding the new connection by slowing down the communication with the new node. Certain predefined rules are applied on the new node to make a decision regarding the anomality of the node. When the timer value of each honeypot expires, other sensor nodes are appointed as honeypots. Owing to this honeypot rotation, the intruder will not be able to track a honeypot to impair the network. Simulation results show that this technique can efficiently handle the anomaly detection in a WSN.

iVisher: Real-Time Detection of Caller ID Spoofing

  • Song, Jaeseung;Kim, Hyoungshick;Gkelias, Athanasios
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.865-875
    • /
    • 2014
  • Voice phishing (vishing) uses social engineering, based on people's trust in telephone services, to trick people into divulging financial data or transferring money to a scammer. In a vishing attack, a scammer often modifies the telephone number that appears on the victim's phone to mislead the victim into believing that the phone call is coming from a trusted source, since people typically judge a caller's legitimacy by the displayed phone number. We propose a system named iVisher for detecting a concealed incoming number (that is, caller ID) in Session Initiation Protocol-based Voice-over-Internet Protocol initiated phone calls. Our results demonstrate that iVisher is capable of detecting a concealed caller ID without significantly impacting upon the overall call setup time.

Real-Time Visualization of Web Usage Patterns and Anomalous Sessions (실시간 웹 사용 현황과 이상 행위에 대한 시각화)

  • 이병희;조상현;차성덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.97-110
    • /
    • 2004
  • As modem web services become enormously complex, web attacks has become frequent and serious. Existing security solutions such as firewalls or signature-based intrusion detection systems are generally inadequate in securing web services, and analysis of raw web log data is simply impractical for most organizations. Visual display of "interpreted" web logs, with emphasis on anomalous web requests, is essential for an organization to efficiently track web usage patterns and detect possible web attacks. In this paper, we discuss various issues related to effective real-time visualization of web usage patterns and anomalies. We implemented a software tool named SAD (session anomaly detection) Viewer to satisfy such need and conducted an empirical study in which anomalous web traffics such as Misuse attacks, DoS attacks, Code-Red worms and Whisker scans were injected. Our study confirms that SAD Viewer is useful in assisting web security engineers to monitor web usage patterns in general and anomalous web sessions in particular.articular.

A Countermeasure against a Whitelist-based Access Control Bypass Attack Using Dynamic DLL Injection Scheme (동적 DLL 삽입 기술을 이용한 화이트리스트 기반 접근통제 우회공격 대응 방안 연구)

  • Kim, Dae-Youb
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.380-388
    • /
    • 2022
  • The traditional malware detection technologies collect known malicious programs and analyze their characteristics. Then such a detection technology makes a blacklist based on the analyzed malicious characteristics and checks programs in the user's system based on the blacklist to determine whether each program is malware. However, such an approach can detect known malicious programs, but responding to unknown or variant malware is challenging. In addition, since such detection technologies generally monitor all programs in the system in real-time, there is a disadvantage that they can degrade the system performance. In order to solve such problems, various methods have been proposed to analyze major behaviors of malicious programs and to respond to them. The main characteristic of ransomware is to access and encrypt the user's file. So, a new approach is to produce the whitelist of programs installed in the user's system and allow the only programs listed on the whitelist to access the user's files. However, although it applies such an approach, attackers can still perform malicious behavior by performing a DLL(Dynamic-Link Library) injection attack on a regular program registered on the whitelist. This paper proposes a method to respond effectively to attacks using DLL injection.

A Study on the Establishment of the IDS Using Machine Learning (머신 러닝을 활용한 IDS 구축 방안 연구)

  • Kang, Hyun-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Computing systems have various vulnerabilities to cyber attacks. In particular, various cyber attacks that are intelligent in the information society have caused serious social problems and economic losses. Traditional security systems are based on misuse-based technology, which requires the continuous updating of new attack patterns and the real-time analysis of vast amounts of data generated by numerous security devices in order to accurately detect. However, traditional security systems are unable to respond through detection and analysis in real time, which can delay the recognition of intrusions and cause a lot of damage. Therefore, there is a need for a new security system that can quickly detect, analyze, and predict the ever-increasing cyber security threats based on machine learning and big data analysis models. In this paper, we present a IDS model that combines machine learning and big data technology.

A pioneer scheme in the detection and defense of DrDoS attack involving spoofed flooding packets

  • Kavisankar, L.;Chellappan, C.;Sivasankar, P.;Karthi, Ashwin;Srinivas, Avireddy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1726-1743
    • /
    • 2014
  • DDoS (Distributed Denial of Service) has been a continuous threat to the cyber world with the growth in cyber technology. This technical evolution has given rise to a number of ultra-sophisticated ways for the attackers to perform their DDoS attack. In general, the attackers who generate the denial of service, use the vulnerabilities of the TCP. Some of the vulnerabilities like SYN (synchronization) flooding, and IP spoofing are used by the attacker to create these Distributed Reflected Denial of Service (DrDoS) attacks. An attacker, with the assistance of IP spoofing creates a number of attack packets, which reflects the flooded packets to an attacker's intended victim system, known as the primary target. The proposed scheme, Efficient Spoofed Flooding Defense (ESFD) provides two level checks which, consist of probing and non-repudiation, before allocating a service to the clients. The probing is used to determine the availability of the requested client. Non-repudiation is taken care of by the timestamp enabled in the packet, which is our major contribution. The real time experimental results showed the efficiency of our proposed ESFD scheme, by increasing the performance of the CPU up to 40%, the memory up to 52% and the network bandwidth up to 67%. This proves the fact that the proposed ESFD scheme is fast and efficient, negating the impact on the network, victim and primary target.