• Title/Summary/Keyword: Real-flight simulation

Search Result 159, Processing Time 0.026 seconds

Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Wave: Simulation

  • Jeong, Hyun-Jo;Lee, Jung-Sik;Bae, Sung-Min;Lee, Hyun-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.261-270
    • /
    • 2010
  • This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional side bands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.

A Study on Development and Validation of DIP to Application of Aircraft Database in Rea- Time Simulator Environment (실시간 시뮬레이터 환경에서 항공기 데이터베이스 적용을 위한 DIP 개발 및 검증에 관한 연구)

  • Kang, Im-Ju;Kim, Chong-Sup;Lee, Gi-Beom;Ahn, Sung-Jun;Shin, Sun-Young;Cho, In-Je;Ahn, Jong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.807-815
    • /
    • 2008
  • In this paper, design, development and evaluation of DIP(Database Interface Program) are presented. The main purpose of this study is to improve the simulation quality to get more realistic response of target system. The designed and developed major function is composed of flexible memory structure, efficient arithmetic database language and high speed interpolation/extrapolation algorithm. To evaluate the operation speed and accuracy of returned data, trim simulation is performed based on in-house software and, DIP is applied to existing real-time simulator such as engineering HQS(Handling Quality Simulator) to evaluate reliability and performance. The result of evlaution reveals that calculation speed and data accuracy are satisfied, and flight performance is satisfied in the real-time simulator environments.

An innovative approach for the numerical simulation of oil cooling systems

  • Carozza, A.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.169-182
    • /
    • 2015
  • Aeronautics engine cooling is one of the biggest problems that engineers have tried to solve since the beginning of human flight. Systems like radiators should solve this purpose and they have been studied extensively and various solutions have been found to aid the heat dissipation in the engine zone. Special interest has been given to air coolers in order to guide the air flow on engine and lower the high temperatures achieved by the engine in flow conditions. The aircraft companies need faster and faster tools to design their solutions so the development of tools that allow to quickly assess the effectiveness of an cooling system is appreciated. This paper tries to develop a methodology capable of providing such support to companies by means of some application examples. In this work the development of a new methodology for the analysis and the design of oil cooling systems for aerospace applications is presented. The aim is to speed up the simulation of the oil cooling devices in different operative conditions in order to establish the effectiveness and the critical aspects of these devices. Steady turbulent flow simulations are carried out considering the air as ideal-gas with a constant-averaged specific heat. The heat exchanger is simulated using porous media models. The numerical model is first tested on Piaggio P180 considering the pressure losses and temperature increases within the heat exchanger in the several operative data available for this device. In particular, thermal power transferred to cooling air is assumed equal to that nominal of real heat exchanger and the pressure losses are reproduced setting the viscous and internal resistance coefficients of the porous media numerical model. To account for turbulence, the k-${\omega}$ SST model is considered with Low- Re correction enabled. Some applications are then shown for this methodology while final results are shown in terms of pressure, temperature contours and streamlines.

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

Development of Infrared Target for Dual-Sensor Imaging Seeker's Test and Evaluation in HILS System (이종센서 영상탐색기 시험평가를 위한 적외선 표적원 개발)

  • Park, Changhan;Song, Sungchan;Jung, Sangwoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.898-905
    • /
    • 2018
  • In this work, infrared targets for a developed hardware-in-the-loop simulation(HILS) system are proposed for a performance test of a dual-sensor imaging seeker equipped with an infrared and a visible sensor that can lock and track for ground and air targets. This integrated system is composed of 100 modules of heat and light sources to simulate various kinds of target and the trajectory of moving targets based on scenarios. It is possible to simulate not only the position, velocity, and direction for these targets but also background clutter and jamming environments. The design and measurement results of an infrared target, such as the HILS system configuration, developed for testing and evaluation of a dual-sensor imaging seeker are described. In the future, it is planned to test the lock-on and tracking performance of an imaging seeker equipped with single or dual sensors dynamically in real time based on a simulation flight scenario in the developed HILS system.

Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight (유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석)

  • Lee, Han-Kang;Jang, Jae-Yeon;Ahn, Jae-Min;Kim, Chang-Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2018
  • The study of air defense against North Korean tactical ballistic missiles (TBM) should consider the rapidly changing battlefield environment. The study for target re-designation for intercept missiles enables effective operation of friendly defensive assets as well as responses to dynamic battlefield. The researches that have been conducted so far do not represent real-time dynamic battlefield situation because the hit probability for the TBM, which plays an important role in the decision making process, is fixed. Therefore, this study proposes a target re-designation algorithm that makes decision based on hit probability which considers real-time field environment. The proposed method contains a trajectory prediction model that predicts the expected trajectory of the TBM from the current position and velocity information by using random forest and moving window. The predicted hit probability can be calculated through the trajectory prediction model and the simulator of the intercept missile, and the calculated hit probability becomes the decision criterion of the target re-designation algorithm for the missile. In the experiment, the validity of the methodology used in the TBM trajectory prediction model was verified and the superiority of using the hit probability through the proposed model in the target re-designation decision making process was validated.

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Virtual Environments for Medical Training: Soft tissue modeling (의료용 훈련을 위한 가상현실에 대한 연구)

  • Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.372-377
    • /
    • 2007
  • For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in particular, has made it more difficult for an instructor to demonstrate the required manual skills. It has been recognized that, similar to flight simulators for pilots, virtual reality (VR) based surgical simulators promise a safer and more comprehensive way to train manual skills of medical personnel in general and surgeons in particular. One of the major challenges in the development of VR-based surgical trainers is the real-time and realistic simulation of interactions between surgical instruments and biological tissues. It involves multi-disciplinary research areas including soft tissue mechanical behavior, tool-tissue contact mechanics, computer haptics, computer graphics and robotics integrated into VR-based training systems. The research described in this paper addresses the problem of characterizing soft tissue properties for medical virtual environments. A system to measure in vivo mechanical properties of soft tissues was designed, and eleven sets of animal experiments were performed to measure in vivo and in vitro biomechanical properties of porcine intra-abdominal organs. Viscoelastic tissue parameters were then extracted by matching finite element model predictions with the empirical data. Finally, the tissue parameters were combined with geometric organ models segmented from the Visible Human Dataset and integrated into a minimally invasive surgical simulation system consisting of haptic interface devices and a graphic display.

  • PDF

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

PGA Implementation Technique for Stripmap SAR Signal Processing (Stripmap SAR 신호처리를 위한 PGA 적용 기법)

  • Yoon, Sang-Ho;Koh, Bo-Yeon;Kong, Young-Kyun;Shin, Hee-Sub
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.151-161
    • /
    • 2011
  • PGA(Phase Gradient Autofocus) is a representative autofocus technique to improve the SAR(Synthetic Aperture Radar) image quality. PGA can estimate high order phase errors and have good robustness in noisy environments. However, PGA is not suitable to apply to the stripmap mode data directly because it is based on the spotlight mode operation. In this paper, the PGA implementation technique for stripmap mode data and the method of ROI(Region of Interest) selection that affects severely on PGA performance have been proposed. The proposed technique was verified by the point target simulation first, and was applied to the real SAR signal data acquired by the flight test. Finally, the significant improvements in focusing quality were shown in the processed SAR images using the proposed method.