• Title/Summary/Keyword: Real-flight simulation

Search Result 155, Processing Time 0.023 seconds

A Real Time HILS of the Guidance Flight System (시선지령 유도 비행체의 실시간 실물 시뮬레이션 기법)

  • 김영주;이종하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.638-647
    • /
    • 1994
  • This paper describes the real time Hardware-In-the Loop Simulation(HILS) that is an efective tool for design, testing and performance evaluation of the guidanc eflight system. The real time HILS was performed by using a 3-axis flight motion simulator, real time computer, I/O system and flight control system hardware along with the assumed flight trajectory of the guidance flight system. Also, we proved the validity of the real time HILS is the guidance flight system by comparing its simulation results with the software simulation data and telemetry data.

Development of Drone Racing Simulator using SLAM Technology and Reconstruction of Simulated Environments (SLAM 기술을 활용한 가상 환경 복원 및 드론 레이싱 시뮬레이션 제작)

  • Park, Yonghee;Yu, Seunghyun;Lee, Jaegwang;Jeong, Jonghyeon;Jo, Junhyeong;Kim, Soyeon;Oh, Hyejun;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.245-249
    • /
    • 2021
  • In this paper, we present novel simulation contents for drone racing and autonomous flight of drone. With Depth camera and SLAM, we conducted mapping 3 dimensional environment through RTAB-map. The 3 dimensional map is represented by point cloud data. After that we recovered this data in Unreal Engine. This recovered raw data reflects real data that includes noise and outlier. Also we built drone racing contents like gate and obstacles for evaluating drone flight in Unreal Engine. Then we implemented both HITL and SITL by using AirSim which offers flight controller and ROS api. Finally we show autonomous flight of drone with ROS and AirSim. Drone can fly in real place and sensor property so drone experiences real flight even in the simulation world. Our simulation framework increases practicality than other common simulation that ignore real environment and sensor.

Flight Dynamics Modeling Using Quaternions (쿼터니언을 이용한 비행운동 모델링)

  • 황명신;박욱제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.187-187
    • /
    • 2000
  • This paper presents the comparison of Euler-Rodrigues quaternion and Euler Angles using attitude kinematics for aircraft flight simulation. It is hard for PC-Level to accomplish real-time simulation. The purpose of this paper is to accomplish real-time simulation of the aircraft dynamics modeling parts and the graphics parts. The computation time is more reduced in case of applying quaternions than Euler Angles. This paper provides a quaternions algorithm and it's applications for the real-time simulation.

  • PDF

Study of Flight Simulation using Real-Time Aerodynamic Model (실시간 공력모델을 이용한 비행 시뮬레이션 연구)

  • Lee, Chang Ho;Park, Young Min;Choi, Hyoung Sik
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

Analysis on Flight Test Results of Reconfiguration Flight Control System (재형상 비행제어 시스템의 비행시험 결과 분석)

  • Min, Byoung-Mun;Kim, Seong-Pil;Kim, Bong-Ju;Kim, Eung-Tai;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1244-1252
    • /
    • 2008
  • This paper presents the analysis results obtained by the flight test of reconfiguration flight control system for an aircraft. The reconfiguration flight control system was designed by using control allocation scheme that automatically distributes the demanded control moments determined by control law to each actual control surface. In this paper, some control allocation algorithms for reconfiguration control of general aircraft with redundant control surfaces are summarized and their performance evaluation results through nonlinear simulation and Hardware-In-the-Loop-Simulation (HILS) test are shown. Also, Unmanned Aerial Vehicle (UAV) system adopted as a platform for the flight test of reconfiguration flight controller and the implementation procedure of reconfiguration flight controller into real-time UAV system were introduced. Finally, flight test results were analyzed.

A Study on Flight Simulation Based on HLA-RTI (HLA-RTI에 기반 한 비행시뮬레이션에 관한 연구)

  • Hyun, Se-Woong;Yoon, Sug-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.602-608
    • /
    • 2009
  • The HLA system architecture, prescribed in IEEE-1516, is a core fundamental technology to build a complex simulation network system which is composed of a number of individual simulation developed for different purposes. The model structure of flight simulation with expansibility and compatability was suggested in this thesis by showing how to implement HLA to a commercial flight simulation software and how the system implemented with HLA to work. In addition, it was judged whether real-time can be guaranteed implementing to a simulation system with integrity through analysis of flight information data collected by comparing real-time simulation based on HLA with commercial flight simulation.

A Real time Simulation for Performance Analysis of Flight Control System (비행체 제어장치의 성능 해석을 위한 실시간 시뮬레이션)

  • 곽병철;박양배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.458-464
    • /
    • 1986
  • This paper introduces a method for design verification and performance evaluation of flight control system. The method is a real time hardware in the loop simulation using the hybrid computer and motion table facility. As a typical illustration, a roll control system of flight vehicle is applied. The simulation validity is demonstrated by comparing hardware test results with analog simulation results.

  • PDF

In Flight Simulation for Flight Control Law Evaluation of Fly-by-Wire Aircraft (I)

  • Ko, Joon-Soo;Lee, Ho-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2560-2565
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The control law was designed for the most unstable aircraft configuration flight regime for the target aircraft (FBWA). The ground based simulation including math-model, real-time pilot-in-the-loop and iron bird simulation were used for validation of the control law before the experimental in-flight simulation on the IFS (In.Flight-Simulator) aircraft. The flight tests results showed that Level 1 handling qualities for the most unstable flight regime were achieved.

  • PDF

A Study on the Real Time Simulation of Continuous Dynamic System Using a Multiprocessor (Multiprocessor를 이용한 연속 동특성계의 실시간 시뮬레이션에 관한 연구)

  • 곽병철;양해원
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.559-567
    • /
    • 1987
  • In this paper, the real time simulation of continuous dynamic system was performed by general integration algorithms using multiprocessor. For the stable simulation, the relation between stability of integration method and integration step-size was investigated from the stability graph. As a typical illustration, the real-time digital simulation and the real-time hard-ware-in-the-loop simulation of flight control system were performed and reviewed. Moreover through the real-time simulation, the design verification and performace test of flight control system could be evaluated. The computer used for simulation is AD10, which is a very high-speed special-purpose computer designed specifically for a time-critical simulation of large and complex models of dynamic systems. The simulation validity is demonstrated by comparing hardware simulation results with software simulation results.

  • PDF

A Study on the Design and Validation of Switching Mechanism in Hot Bench System-Switch Mechanism Computer Environment (HBS-SWMC 환경에서의 전환장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Lee, Dong-Kyu;Park, Sang-Seon;Park, Sung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.711-719
    • /
    • 2008
  • Although non-real time simulation and pilot based evaluations are available for the development of flight control computer prior to real flight tests, there are still many risky factors. The control law designed for prototype aircraft often leads to degraded performance from the initial design objectives, therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS(In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV(High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA(Variable stability. In flight Simulation Test Aircraft) programs. This paper addresses the concept of switching mechanism for FLCC(Flight Control Computer)-SWMC(Switching Mechanism Computer) using 1553B communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed to reduce abrupt transient and minimize the integrator effect in pitch axis control law. It hans been turned out from the pilot evaluation in real time that the aircraft is controllable during the inter-conversion process through the flight control computer, and level 1 handling qualities are guaranteed. In addition, flight safety is maintained with an acceptable transient response during aggressive maneuver performed in severe flight conditions.