• Title/Summary/Keyword: Real-Time Stream Processing System

Search Result 94, Processing Time 0.023 seconds

The Framework of Stream Data Processing System for Realtime Health Care Service (실시간 헬스케어 서비스를 위한 스트림 데이터 시스템 프레임워크의 설계)

  • Wu, Zejun;Lee, Yeon;Bae, Hae-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.21-22
    • /
    • 2011
  • The growth of using smartphone and tablet pc has enabled variety kinds of realtime applications. In these applications, the data which we called data stream is multidimensional, continuous, rapid, and time-varying. However the traditional Database Management System (DBMS) suffers from processing the real time and complex application, in this paper we proposed the framework for CCR Data Stream Server's design and implementation that compiled with Data Stream Database Management System (DSMS) and DBMS in EMR system. The system enables users not only to query stored CCR information from DBMS, but also to execute continues query for the real-time CCR Data Stream.

  • PDF

Jave based Embedded System Design and Implementation for Real-time Stream Data Processing (Java 기반 실시간 센서 데이터스트림처리 및 임베디드 시스템 구현)

  • Kim, Hyu-Chan;Ko, Wan-Ki;Park, Sang-Yeol
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2008
  • Home network is a technology that provides possibilities of monitoring/controling/mutilating-recognition between optional home network machines in residences. Currently, home network or other networks like entertainment, residential electronic networks are jumbled together with heterogeneous networks in a rampaging condition. In a reality of high expectation for home networks system like the mutual application for various machines, we are required to have the unification technology for conveniences to satisfy expectations. This thesis reflects how to develop Java applications or mutual products based on convenient interfaces actually that process various sensors which create real time data stream in Java platform through Java based sensor data-stream processing embedded middleware design and realization in real time.

Implementing stream processing functionalities of Splash (Splash의 스트림 프로세싱 기능 구현)

  • Ahn, Jaeho;Noh, Soonhyun;Hong, Seongsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.377-380
    • /
    • 2019
  • To accommodate for the difficult task of satisfying application's system timing constraints, we are developing Splash, a real time stream processing language for embedded AI applications. Splash is a graphical programming language that designs applications through data flow graph which, later automatically generates into codes. The codes are compiled and executed on top of the Splash runtime system. The Splash runtime system supports two aspects of the application. First, it supports the basic stream processing functions required for an application to operate on multiple streams of data. Second, it supports the checking and handling of the user configurated timing constraints. In this paper we explain the implementation of the first aspect of the Splash runtime system which is being developed using a real time communication middleware called DDS.

  • PDF

Real-Time IoT Big-data Processing for Stream Reasoning (스트림-리즈닝을 위한 실시간 사물인터넷 빅-데이터 처리)

  • Yun, Chang Ho;Park, Jong Won;Jung, Hae Sun;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Smart Cities intelligently manage numerous infrastructures, including Smart-City IoT devices, and provide a variety of smart-city applications to citizen. In order to provide various information needed for smart-city applications, Smart Cities require a function to intelligently process large-scale streamed big data that are constantly generated from a large number of IoT devices. To provide smart services in Smart-City, the Smart-City Consortium uses stream reasoning. Our stream reasoning requires real-time processing of big data. However, there are limitations associated with real-time processing of large-scale streamed big data in Smart Cities. In this paper, we introduce one of our researches on cloud computing based real-time distributed-parallel-processing to be used in stream-reasoning of IoT big data in Smart Cities. The Smart-City Consortium introduced its previously developed smart-city middleware. In the research for this paper, we made cloud computing based real-time distributed-parallel-processing available in the cloud computing platform of the smart-city middleware developed in the previous research, so that we can perform real-time distributed-parallel-processing with them. This paper introduces a real-time distributed-parallel-processing method and system for stream reasoning with IoT big data transmitted from various sensors of Smart Cities and evaluate the performance of real-time distributed-parallel-processing of the system where the method is implemented.

Design and Implementation of Advanced Traffic Monitoring System based on Integration of Data Stream Management System and Spatial DBMS

  • Xia, Ying;Gan, Hongmei;Kim, Gyoung-Bae
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.162-169
    • /
    • 2009
  • The real-time traffic data is generated continuous and unbounded stream data type while intelligent transport system (ITS) needs to provide various and high quality services by combining with spatial information. Traditional database techniques in ITS has shortage for processing dynamic real-time stream data and static spatial data simultaneously. In this paper, we design and implement an advanced traffic monitoring system (ATMS) with the integration of existed data stream management system (DSMS) and spatial DBMS using IntraMap. Besides, the developed ATMS can deal with the stream data of DSMS, the trajectory data of relational DBMS, and the spatial data of SDBMS concurrently. The implemented ATMS supports historical and one time query, continuous query and combined query. Application programmer can develop various intelligent services such as moving trajectory tracking, k-nearest neighbor (KNN) query and dynamic intelligent navigation by using components of the ATMS.

  • PDF

A Spatial Data Stream Processing System for Spatial Context Analysis in Real-time (실시간 공간 상황 분석을 위한 공간 데이터 스트림 처리 시스템)

  • Kwon, O-Je;Kim, Jae-Hun;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • Spatial data streams from sensors are useful in context-awareness for many types of applications. However, an important gap is found between spatial data stream management in real-time and complex computation for spatial context-awareness, and this brings about serious difficulty to integrate spatial data stream processing and context-awareness. In this paper, we present a system called SCONSTREAM(Spatial CONtext STREAm Management) that we have developed to resolve the gap between spatial data stream and context-awareness. The key approach of our system is to filter off unnecessary spatial data streams and convert them to the spatial context streams, which are smaller and more suitable to be processed by the context-awareness module than raw data from sensors. By experimentation, We show that SCONSTREAM resolves the functional gap between spatial stream processing and spatial context-awareness module.

Implementation of Real-time Data Stream Processing for Predictive Maintenance of Offshore Plants (해양플랜트의 예지보전을 위한 실시간 데이터 스트림 처리 구현)

  • Kim, Sung-Soo;Won, Jongho
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.840-845
    • /
    • 2015
  • In recent years, Big Data has been a topic of great interest for the production and operation work of offshore plants as well as for enterprise resource planning. The ability to predict future equipment performance based on historical results can be useful to shuttling assets to more productive areas. Specifically, a centrifugal compressor is one of the major piece of equipment in offshore plants. This machinery is very dangerous because it can explode due to failure, so it is necessary to monitor its performance in real time. In this paper, we present stream data processing architecture that can be used to compute the performance of the centrifugal compressor. Our system consists of two major components: a virtual tag stream generator and a real-time data stream manager. In order to provide scalability for our system, we exploit a parallel programming approach to use multi-core CPUs to process the massive amount of stream data. In addition, we provide experimental evidence that demonstrates improvements in the stream data processing for the centrifugal compressor.

Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data (실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템)

  • Jeong, Seongmin;Yeon, Hanbyul;Jeong, Daekyo;Yoo, Sangbong;Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Risk management system should be able to support a decision making within a short time to analyze stream data in real time. Many analytical systems consist of CPU computation and disk based database. However, it is more problematic when existing system analyzes stream data in real time. Stream data has various production periods from 1ms to 1 hour, 1day. One sensor generates small data but tens of thousands sensors generate huge amount of data. If hundreds of thousands sensors generate 1GB data per second, CPU based system cannot analyze the data in real time. For this reason, it requires fast processing speed and scalability for analyze stream data. In this paper, we present a fast visualization technique that consists of hybrid database and GPU computation. In order to evaluate our technique, we demonstrate a visual analytics system that analyzes pipeline leak using sensor and tweet data.

The Implementation of DSP-Based Real-Time Video Transmission System using In-Vehicle Multimedia Network (차량 내 멀티미디어 네트워크를 이용한 DSP 기반 실시간 영상 전송 시스템의 구현)

  • Jeon, Young-Joon;Kim, Jin-II
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2013
  • This paper proposes real-time video transmission system by the car-mounted cameras based on MOST Network. Existing vehicles transmit videos by connecting the car-mounted cameras in the form of analog. However, the increase in the number of car-mounted cameras leads to development of the network to connect the cameras. In this paper, DSP is applied to process MPEG 2 encoding/decoding for real-time video transmission in a short period of time. MediaLB is employed to transfer data stream between DSP and MOST network controller. During this procedure, DSP cannot transport data stream directly from MediaLB. Therefore, FPGA is used to deliver data stream transmitting MediaLB to DSP. MediaLB is designed to streamline hardware/software application development for MOST Network and to support all MOST Network data transportation methods. As seen in this paper, the test results verify that real-time video transmission using proposed system operates in a normal matter.

Real-time multi-GPU-based 8KVR stitching and streaming on 5G MEC/Cloud environments

  • Lee, HeeKyung;Um, Gi-Mun;Lim, Seong Yong;Seo, Jeongil;Gwak, Moonsung
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.