• Title/Summary/Keyword: Real-Time Scheduling System

Search Result 463, Processing Time 0.027 seconds

Process Algebra for Multiple Shared Resources (다중 공유 자원을 위한 프로세스 대수)

  • Yoo, Hee-Jun;Lee, Ki-Huen;Choi, Jin-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.337-344
    • /
    • 2000
  • In this paper, we define a Process Algebra ACSMR(Algebra of Communicating Shared Multiple Resources) for system specification and verification using multiple resources. ACSMR extends a concept of multiple resources in ACSR that is a branch of formal methods based on process algebra. We'll show that two specification and verification examples. One is the specification of system behavior in multiprocessor using EDF(Earliest-Deadline-First) which is a scheduling algorithm of a real-time system. The other is the specification of describing timing analysis and resources restriction in a super scalar processor using multiple ports registers.

  • PDF

The Development of Monitoring System in the Scrubber of Semiconductor Manufacture Processing (반도체 공정의 SCRUBBER 감시 시스템 개발)

  • Kim, Joohn-Hwan;Kim, Sang-Woo;Kim, Beung-Jin;Moon, Hak-Yong;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2390-2392
    • /
    • 1998
  • In this paper, we discuss the development of monitoring system with data process equipment which transfers data from Remote Terminal Unit(RTU) to monitoring computer. The RTUs sense temperature, pressure and PLC(Programmable Logic Controller) nodes conditions of scrubber in semiconductor manufacture processing. The data Process equipment is connected every RTU and a monitoring computer through serial communication. This equipment receives informations from RTU, process data, and transfers them to monitoring computer. To avoid congestion in data communication, task scheduling algorithm used RT O/S(Real-Time Operating System) is embedded in ROM which is a part of data Process equipment.

  • PDF

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1996.05a
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF

A Differentiated Web Service System through Kernel-Level Realtime Scheduling and Load Balancing (커널 수준 실시간 스케줄링과 부하 분산을 통한 차별화된 웹 서비스 시스템)

  • 이명섭;박창현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6B
    • /
    • pp.533-543
    • /
    • 2003
  • Recently, according to the rapid increase of Web users, various kinds of Web applications have been being developed. Hence, Web QoS(Quality of Service) becomes a critical issue in the Web services, such as e-commerce, Web hosting, etc. Nevertheless, most Web servers currently process various requests from Web users on a FIFO basis, which can not provide differentiated QoS. This paper presents two approaches to provide differentiated Web QoS. The first is the kernel-level approach, which is adding a real-time scheduling processor to the operating system kernel to maintain the priority of user requests determined by the scheduling processor of Web server. The second is the load-balancing approach, which uses If-level masquerading and tunneling technology to improve reliability and response speed upon user requests.

A Real-Time Scheduling Mechanism in Multiprocessor System for Supporting Multimedia (멀티미디어 지원을 위한 다중 프로세서 시스템에서 실시간 스케줄링 기법)

  • 임순영;이재완;전칠환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.159-168
    • /
    • 1997
  • This paper presents a mechanism which supplies tasks with fast turn-around time on real-time multimedia environments. Tasks are classified into periodic and aperiodic tasks according to their executing period, and the types of them are classified into three groups : critical tasks, essential tasks and common tasks by the degree of its urgency. In the case of periodic tasks, we defer the execution of it within the extent to keep the deadline as long as possible and serve the aperiodic tasks, and provide aperiodic tasks with fast turn-around time. Changing the priority of each task is allowed within the same type and it is scheduled by using the dynamic priority. The emergency tasks are executed within deadline in any circumstances, and the least laxity one is served first when many real-time tasks are waiting for execution. The result of simulation shows that the proposed mechanism is better than the EDZL, known as suboptimal in multiprocessor systems, in the point of rum-around time.

  • PDF

Application Markov State Model for the RCM of Combustion turbine Generating Unit (Markov State Model을 이용한 복합화력 발전설비의 최적의 유지보수계획 수립)

  • Shin, Jun-Seok;Lee, Seung-Hyuk;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.357-359
    • /
    • 2006
  • Traditional time based preventive maintenance is used to constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is scheduled by RCM(Reliability-Centered Maintenance) evaluation. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by a Markov model. In case study, simulation results about RCM are used to the real historical data of combustion turbine generating units in Korean power systems.

  • PDF

Application Markov State Model for the RCM of Combustion Turbine Generating Unit (Markov State Model을 이용한 복합화력 발전설비의 최적의 유지보수계획 수립)

  • Lee, Seung-Hyuk;Shin, Jun-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.248-253
    • /
    • 2007
  • Traditional time based preventive maintenance is used to constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is scheduled by RCM(Reliability-Centered Maintenance) evaluation. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by a Markov model. In case study, simulation results about RCM are used to the real historical data of combustion turbine generating units in Korean power systems.

Optimal Bandwidth Allocation and QoS-adaptive Control Co-design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.596-606
    • /
    • 2008
  • In this paper, we present a co-design methodology of dynamic optimal network-bandwidth allocation (ONBA) and adaptive control for networked control systems (NCSs) to optimize overall control performance and reduce total network-bandwidth usage. The proposed dynamic co-design strategy integrates adaptive feedback control with real-time scheduling. As part of this co-design methodology, a "closed-loop" ONBA algorithm for NCSs with communication constraints is presented. Network-bandwidth is dynamically assigned to each control loop according to the quality of performance (QoP) information of each control loop. As another part of the co-design methodology, a network quality of service (QoS)-adaptive control design approach is also presented. The idea is based on calculating new control values with reference to the network QoS parameters such as time delays and packet losses measured online. Simulation results show that this co-design approach significantly improves overall control performance and utilizes less bandwidth compared to static strategies.

Study on Dispatching for Quality and Productivity with estimated completion time (품질과 생산성을 위한 작업완료시간 예측을 통한 작업투입방법)

  • Ko, Hyo-Heon;Baek, Jong-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1095-1100
    • /
    • 2010
  • Customer satisfaction is a main issue in the modern competitive industrial environment. So quality and productivity are the most important requisites. This paper presents a method for effective real time dispatching for parallel machines with multi product that minimizes mean tardiness and maximizes the quality of the product. In this paper, the effectiveness of the method has been examined in the simulation and compared with other dispatching methods. Using this method presented in this paper, companies can improve customer satisfaction.

Heterogeneous Parallel Architecture for Face Detection Enhancement

  • Albssami, Aishah;Sharaf, Sanaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.193-198
    • /
    • 2022
  • Face Detection is one of the most important aspects of image processing, it considers a time-consuming problem in real-time applications such as surveillance systems, face recognition systems, attendance system and many. At present, commodity hardware is getting more and more heterogeneity in terms of architectures such as GPU and MIC co-processors. Utilizing those co-processors along with the existing traditional CPUs gives the algorithm a better chance to make use of both architectures to achieve faster implementations. This paper presents a hybrid implementation of the face detection based on the local binary pattern (LBP) algorithm that is deployed on both traditional CPU and MIC co-processor to enhance the speed of the LBP algorithm. The experimental results show that the proposed implementation achieved improvement in speed by 3X when compared to a single architecture individually.