• Title/Summary/Keyword: Real-Time Scheduling Algorithm

Search Result 362, Processing Time 0.017 seconds

A Critical Path Search and The Project Activities Scheduling (임계경로 탐색과 프로젝트 활동 일정 수립)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.141-150
    • /
    • 2012
  • This paper suggests a critical path search algorithm that can easily draw PERT/GANTT chart which manages and plans a project schedule. In order to evaluate a critical path that determines the project schedule, Critical Path Method (CPM) is generally utilized. However, CPM undergoes 5 stages to calculate the critical path for a network diagram that is previously designed according to correlative relationship and execution period of project execution activities. And it may not correctly evaluate $T_E$ (The Earliest Time), since it does not suggest the way how to determine the sequence of the nodes activities that calculate the $T_E$. Also, the sequence of the network diagram activities obtained from CPM cannot be visually represented, and hence Lucko suggested an algorithm which undergoes 9 stages. On the other hand, the suggested algorithm, first of all, decides the sequence in advance, by reallocating the nodes into levels after Breadth-First Search of the network diagram that is previously designed. Next, it randomly chooses nodes of each level and immediately determines the critical path only after calculation of $T_E$. Finally, it enables the representation of the execution sequence of the project activity to be seen precisely visual by means of a small movement of $T_E$ of the nodes that are not belonging to the critical path, on basis of the $T_E$ of the nodes which belong to the critical path. The suggested algorithm has been proved its applicability to 10 real project data. It is able to get the critical path from all the projects, and precisely and visually represented the execution sequence of the activities. Also, this has advantages of, firstly, reducing 5 stages of CPM into 1, simplifying Lucko's 9 stages into 2 stages that are used to clearly express the execution sequence of the activities, and directly converting the representation into PERT/GANTT chart.

Performance Evaluation of Output Queueing ATM Switch with Finite Buffer Using Stochastic Activity Networks (SAN을 이용한 제한된 버퍼 크기를 갖는 출력큐잉 ATM 스위치 성능평가)

  • Jang, Kyung-Soo;Shin, Ho-Jin;Shin, Dong-Ryeol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2484-2496
    • /
    • 2000
  • High speed switches have been developing to interconnect a large number of nodes. It is important to analyze the switch performance under various conditions to satisfy the requirements. Queueing analysis, in general, has the intrinsic problem of large state space dimension and complex computation. In fact, The petri net is a graphical and mathematical model. It is suitable for various applications, in particular, manufacturing systems. It can deal with parallelism, concurrence, deadlock avoidance, and asynchronism. Currently it has been applied to the performance of computer networks and protocol verifications. This paper presents a framework for modeling and analyzing ATM switch using stochastic activity networks (SANs). In this paper, we provide the ATM switch model using SANs to extend easily and an approximate analysis method to apply A TM switch models, which significantly reduce the complexity of the model solution. Cell arrival process in output-buffered Queueing A TM switch with finite buffer is modeled as Markov Modulated Poisson Process (MMPP), which is able to accurately represent real traffic and capture the characteristics of bursty traffic. We analyze the performance of the switch in terms of cell-loss ratio (CLR), mean Queue length and mean delay time. We show that the SAN model is very useful in A TM switch model in that the gates have the capability of implementing of scheduling algorithm.

  • PDF