• 제목/요약/키워드: Real-Time Prediction

검색결과 1,219건 처리시간 0.023초

노면의 강도 추정을 통한 자율 주행 로봇의 실시간 최적 주행 파라미터 예측 (Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface)

  • 김자영;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.58-69
    • /
    • 2014
  • This paper proposes a method for predicting maximum friction coefficients and optimal slip ratios as optimal control parameters for traction control or slip control of autonomous mobile robots on rough terrain. This paper focuses on strength of ground surface which indicates different characteristics depending on material types on surface. Strength of various material types can be estimated by Willoughby sinkage model and by a developed testbed which can measure forces, velocities, and displacements generated by wheel-terrain interaction. Estimated strength is collaborated on building improved Brixius model with friction-slip data from experiments with the testbed over sand and grass material. Improved Brixius model covers widespread material types in outdoor environments on predicting friction-slip characteristics depending on strength of ground surface. Thus, a prediction model for obtaining optimal control parameters is derived by partial differentiation of the improved Brixius model with respect to slip. This prediction model can be applied to autonomous mobile robots and finally gives secure maneuverability on rough terrain. Proposed method is verified by various experiments under similar conditions with the ones for real outdoor robots.

강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용 (Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.

코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석 (Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining)

  • 최수진;이동주;황승국
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

DSRC 자료를 이용한 고속도로 단기 통행시간 예측 (Short-Term Prediction of Travel Time Using DSRC on Highway)

  • 김형주;장기태
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2465-2471
    • /
    • 2013
  • 현재까지 통행시간 예측과 관련된 다양한 연구들이 수행되었지만, 한국고속도로 특성에 맞는 예측방법론에 대한 실증연구는 부족한 실정이다. 이에 본 연구에서는 실제 통행시간을 기반으로한 DSRC 자료를 바탕으로 한국고속도로에 적절한 예측방법론을 도출한다. 경부고속도로 안성 JC~오산IC 구간의 24시간 DSRC 자료를 이용하며 단주기 통행시간 예측 및 비선형 관계에서 높은 정확도를 보이는 인공신경망 기법을 적용한다. 이어서 랜덤난수를 이용한 통행시간 예측결과의 정확도 검증을 실시한다. 통행시간 예측결과 오차율이 약 4%로 우수한 예측력을 보였으며, 이는 패턴기반 인공신경망 예측시 이력자료의 전처리 과정과 최적의 입력층 및 은닉층의 선정으로 인한 결과로 판단된다. 통행시간 예측결과의 검증을 위해서 랜덤난수를 이용하였으며, 랜덤난수가 이력자료 패턴에 포함되지 않은 경우 실측치와의 오차율이 18.98%로 높게 도출되었다. 이는 인공신경망을 이용한 통행시간 예측시 패턴DB가 예측의 정확도에 주요하게 작용한 결과로 판단된다. 본 연구의 결과를 통해서 한국고속도로 특성에 맞는 통행시간 예측 및 정보제공이 가능할 것으로 판단된다.

Effect of Dimension Reduction on Prediction Performance of Multivariate Nonlinear Time Series

  • Jeong, Jun-Yong;Kim, Jun-Seong;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.312-317
    • /
    • 2015
  • The dynamic system approach in time series has been used in many real problems. Based on Taken's embedding theorem, we can build the predictive function where input is the time delay coordinates vector which consists of the lagged values of the observed series and output is the future values of the observed series. Although the time delay coordinates vector from multivariate time series brings more information than the one from univariate time series, it can exhibit statistical redundancy which disturbs the performance of the prediction function. We apply dimension reduction techniques to solve this problem and analyze the effect of this approach for prediction. Our experiment uses delayed Lorenz series; least squares support vector regression approximates the predictive function. The result shows that linearly preserving projection improves the prediction performance.

소결공정에서의 완전소결점 위치제어 (Burnthrough point control for a sintering process)

  • 권욱현;고명삼;백기남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.216-224
    • /
    • 1986
  • This paper treats the modelling and the control of the burnthrough point control system for an industrial sintering process. First, a state-space model is derived by defining new unconventional variables. A simple control law is proposed, which consists of the modified receding horizon control law and the least-squares prediction algorithm. The stability and the tracking properties of this control law are proved. The real-time experiments are carried out in a POSCO sintering plant and satisfactory results are presented in this paper. Before the real-time experiments, computer simulations are done and their results are also given for the comparison with the real-time experiments.

  • PDF

DSP를 이용한 실시간 적응격자 예측기 설계 (Design of Real-Time Adaptive Lattice Predictor Using)

  • 김성환;홍기룡;홍완희
    • 대한전자공학회논문지
    • /
    • 제25권2호
    • /
    • pp.119-124
    • /
    • 1988
  • Real-time adaptive lattice predictor was implemented on the TMS32020 DSP chip for digital signal processing. The implemented system was composed of Input-Output units and centrla processing-control unit and its supporting assembly soft ware. The performance of hardware realization was verified by comparing input signal and one-step prediction signal which are calcualted by the real-time adaptive lattice predictor. As a result, for 4 stage lattice structure, the maximum running frequency was obtained as 6.41 KHz in this experiment.

  • PDF

IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델 (Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data)

  • 김삼근;오택일
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.310-318
    • /
    • 2018
  • 최근 사물인터넷(IoT)의 등장으로 인터넷에 연결된 다양한 기기들에 의해 대규모의 데이터가 생성됨에 따라 빅데이터 분석의 중요성이 증가하고 있다. 특히 실시간으로 생성되는 대규모의 IoT 스트리밍 센서 데이터를 분석하여 새로운 의미 있는 미래 예측을 통해 다양한 서비스를 제공하는 것이 필요하게 되었다. 본 논문은 AWS를 활용하여 IoT 센서로부터 생성되는 스트리밍 데이터에 기반하여 실시간 실내 PM10 농도 예측 LSTM 모델을 제안한다. 또한 제안 모델에 따른 실시간 실내 PM10 농도 예측 서비스를 구축한다. 논문에 사용된 데이터는 PM10 IoT 센서로부터 24시간 동안 수집된 스트리밍 데이터이다. 이를 LSTM의 입력 데이터로 사용하기 위해 PM10 시계열 데이터로부터 30개의 연속된 값으로 이루어진 시퀀스 데이터로 변환한다. LSTM 모델은 바로 인접한 공간으로 이동해 가는 슬라이딩 윈도우 프로세스를 통하여 학습한다. 또한 모델의 성능 개선을 위해 24시간마다 수집한 스트리밍 데이터에 대해 점진적 학습 방법을 적용한다. 제안한 LSTM 모델의 성능을 평가하기 위해 선형회귀 모델 및 순환형 신경망(RNN) 모델과 비교한다. 실험 결과는 제안한 LSTM 예측 모델이 선형 회귀보다 700%, RNN 모델보다는 140% 성능 개선이 있음을 보여주었다.

SVM 모델 기반 가용성 예측 기능을 가진 야외마루 관리 서비스 구현 및 성능 평가 (Implementation and Performance Evaluation of Pavilion Management Service including Availability Prediction based on SVM Model)

  • 리자얀티 리타;황민태
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.766-773
    • /
    • 2021
  • 본 논문은 숲속 야외 마루의 실시간 이용 현황을 제공할 뿐만 아니라 기계학습을 통한 예측 서비스를 제공하는 야외 마루 관리 서비스의 구현 및 성능 평가 결과를 담고있다. 개발한 하드웨어 프로토타입은 모션 감지 센서를 이용해 야외 마루의 점유 여부를 감지한 후 위치 정보, 날짜 및 시간, 온도 및 습도 데이터와 함께 클라우드 기반 데이터베이스로 전달한다. 수집된 야외 마루의 실시간 이용 현황은 이용자들에게 모바일 애플리케이션을 통해 제공된다. 성능 평가 결과 하드웨어 모듈에서부터 모바일 애플리케이션까지 평균 1.9초의 응답 시간을 보여주었으며, 정확도는 99%를 보여주고 있음을 확인하였다. 아울러 수집 데이터에다 기계학습 기반의 SVM(Support Vector Model) 모델을 적용한 야외 마루의 가용성 예측 서비스를 구현하고서 이를 모바일 및 웹 애플리케이션을 통해 제공할 수 있도록 하였다.

음향방출법에 의한 항공기용 가스터빈 재료의 크리프 수명예측 평가 (Evaluation on Creep Life Prediction of Aircraft Gas Turbine Material by AE)

  • 공유식;윤한기;오세규
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.55-60
    • /
    • 2002
  • There has been no report on the life prediction for gas turbine materials at high temperatures based on the creep properties and their relationship with the AE(acoustic emission) properties as a means of real-time non-destructive testing. One of the important issues is thus to develop a reliable method of evaluating creep properties by the AE technique. In this paper, the real-time evaluation of high temperature creep time and AE cumulative counts for nickel-based superalloy Udimet 720 was performed on round-bar type specimens under pure load at the temperatures of 811, 922 and 977K. The total AE cumulative counts until the starting point of secondary creep($N_1$) and that of tertiary creep($N_2$) have quantitative relationship with the tertiary creep time and the rupture time. It is thus possible to construct the life prediction system based on creep and the prevention system of tertiary creep by using AE technique.

  • PDF