에너지 절감형 서버 클러스터는 에너지 절감을 고려하지 않는 기존 서버 클러스터에 비해 서비스 품질을 보장하면서 전력소비를 절감하는 것을 목표로 한다. 에너지 절감형 서버 클러스터에서는 현재의 부하를 처리하는 데 필요한 최소수의 서버들만 ON 하도록 고정 또는 가변 주기로 서버들의 전원모드를 조정한다. 이에 대한 기존 연구들은 전력 절감 또는 서비스 품질을 보장하려고 노력해왔지만 에너지 효율성을 잘 고려하지는 못했다. 본 논문에서는 에너지 절감형 클러스터에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법을 제안한다. 자율학습을 통해 최적화된 파라미터들을 이용하여 전력 소모 대비 최고의 성능을 얻을 수 있도록 서버 전원모드를 조정한다. 제안방법은 서버 전원모드 조정을 위해 아래의 과정을 반복 수행한다. 첫째, 현재 부하 및 트래픽 패턴을 보고 현재 워크로드 패턴 유형을 사전에 정의한 대로 분류한다. 둘째, 학습 테이블을 탐색하여 해당 워크로드 패턴 유형에 대해 예전에 학습이 수행되었는지 확인한다. 만일 수행되었다면 이미 저장된 파라미터를 이용한다. 그렇지 않으면, 학습을 수행하여 에너지 효율성 관점에서 최고의 파라미터를 얻어 저장한다. 셋째, 얻어진 파라미터를 이용하여 서버 전원모드를 조정한다. 제안방법을 구현하여 16개의 서버 클러스터 환경에서 3가지 다른 부하 패턴들을 이용하여 실험을 수행하였다. 실험 결과는 제안방법의 에너지 효율성이 뛰어남을 보여주고 있다. 뱅킹 부하패턴, 실제 부하패턴, 가상 부하패턴 각각에 대하여, 제안방법의 단위전력당 good 응답 수가 기존의 정적 서버 전원모드 제어방법의 99.9%, 107.5%, 141.8%이고, 기존의 예측방법의 102.0%, 107.0%, 106.8%이다.
본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.
Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.
인터넷의 일상화와 각종 스마트 기기의 보급으로 이용자들로 하여금 실시간 의사소통이 가능하게 하여 기존의 커뮤니케이션 양식이 새롭게 변화되었다. 인터넷을 통한 정보주체의 변화로 인해 데이터는 더욱 방대해져서 빅데이터라 불리는 정보의 초대형화를 야기하였다. 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회로 여겨지고 있다. 특히 텍스트 마이닝은 비정형 텍스트 데이터를 이용해 패턴을 탐구하여 의미있는 정보를 찾아낸다. 텍스트 데이터는 신문, 도서, 웹, SNS 등 다양한 곳에 존재하기 때문에 데이터의 양이 매우 다양하고 방대하여 사회적 실제를 이해하기 위한 데이터로 적합하다. 본 연구는 한국 최대 인터넷 포털사이트 뉴스의 댓글을 수집하여 2017년 19대 한국 대선을 대상으로 연구를 수행하였다. 대선 선거일 직전 여론조사 공표 금지기간이 포함된 2017년 4월 29일부터 2017년 5월 7일까지 226,447건의 댓글을 수집하여 빈도분석, 연관감성어 분석, 토픽 감성 분석, 후보자 득표율 예측을 수행하였다. 이를 통해 각 후보자들에 대한 이슈를 분석 및 해석하고 득표율을 예측하였다. 분석 결과 뉴스 댓글이 대선 후보들에 대한 이슈를 추적하고 득표율을 예측하기에 효과적인 도구임을 보여주었다. 대선 후보자들은 사회적 여론을 객관적으로 판단하여 선거유세 전략에 반영할 수 있고 유권자들은 각 후보자들에 대한 이슈를 파악하여 투표시 참조할 수 있다. 또한 후보자들이 빅데이터 분석을 참조하여 선거캠페인을 벌인다면 국민들은 자신들이 원하는 바가 후보자들에게 피력, 반영된다는 것을 인지하고 웹상에서 더욱 적극적인 활동을 할 것이다. 이는 국민의 정치 참여 행위로써 사회적 의의가 있다.
전력송전을 위한 터널식 전력구는 점차 시공실적이 증가하고 있는 추세이며, 해저 및 대심도 등 시공환경이 어려운 구간의 건설도 증가하고 있다. 이에 소단면 쉴드TBM의 효율적 운영을 위해 굴진율 및 설계모델이 필요하다. 그러나, 제한된 지반조사 회수 및 굴착면 맵핑으로 인하여 암반특성과 굴진데이터를 정확히 매칭시켜 상호간 상관관계 및 굴진율 모델을 도출하는데 어려움이 있다. 이에 소단면 쉴드TBM에 적합한 굴진율 및 설계모델을 제시하기 위하여 커터헤드의 직경이 3.56 m인 실험용 EPB 쉴드TBM을 제작하고, 총 부피 87.5 ㎥인 인공암반 내에서 총 19번의 실대형 굴진실험을 수행하였다. 본 실험은 70MPa의 균질한 암반강도에서 수행되었기 때문에 운전변수인 추력과 커터헤드의 RPM에 따른 굴진율과 기계데이터간 상관관계를 효율적으로 분석할 수 있으며, 실제 굴착메커니즘과 동일하기 때문에 도출된 압입깊이와 토크값은 활용성이 높다. 본 연구를 통해 디스크커터 당 연직력과 압입깊이의 상관관계 및 연직력과 회전력의 상관관계를 도출하였다. 이러한 상관관계들을 이용하여 70 MPa급 암반에 대해 굴진율 예측과 TBM 설계가 가능할 것으로 판단한다. 또한, 인공암반의 RQD가 100%로 현장적용에 대한 한계점에 대해 FPI의 개념을 도입하여 굴진율 모델의 활용성을 증대시키고자 하였다.
인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.
국내 선거여론조사에서 면접대상인 가구(또는 개인) 표본을 추출하기 위해 유선전화 전화번호부 또는 임의번호걸기(RDD) 방식이 주로 이용되고 있다. 하지만 유선전화를 보유하지 않은 가구가 늘어나고 있고, 유선전화가 있더라도 전화번호부 등재를 꺼리는 가구가 점차 많아지고 있다. 또한 젊은 층이나 직장인의 경우 여론조사가 실시되는 낮 시간대에 주로 외부에서 활동하므로 유선전화를 통한 접촉이 매우 어려운 실정이다. 상술한 문제들로 인하여 선거 여론조사의 예측력이 점점 떨어지고 있으며, 특히 조사시간대에 주로 외부에서 활동하는 사람들에 대한 낮은 접근성은 보수 성향 후보에게 긍정적인 예측결과를 내놓는 편향으로 이어지고 있다. 이러한 문제점을 해소할 수 있는 한 가지 방법으로 이동전화를 함께 활용하는 조사를 생각해 볼 수 있다. 즉, 낮 시간대 재택성향이 높은 사람들에 대해서는 유선전화를 활용한 조사를 수행하고, 부재성향이 높은 사람들에 대해서는 이동전화조사를 수행한 후, 두 결과를 혼합하는 방식(유 무선전화 병행조사)이다. 유 무선전화 병행조사를 실시하기 위해서는 1)유선전화와 이동전화 조사를 위한 표집틀이 확보되어야 하고, 2)유선전화와 이동전화로 조사할 비중을 사전에 결정해야 한다. 본 연구에서는 유 무선전화 병행조사를 실시하기 위한 경험적(heuristic) 방법론을 제안한다. 제안된 방법에서는 유선전화조사를 위해 임의번호걸기 방식을 이용하고, 이동전화조사를 위해 조사회사에서 모집한 조사패널을 활용한다. 또한, 유선전화와 이동전화로 조사할 표본의 비중은 통계청 생활시간조사 결과를 이용해서 계산한 재택율과 부재율을 활용한다. 제안된 조사방법을 활용하여 10.26 서울시장 보궐선거에 대한 여론조사를 실시하였다. 총 4회의 여론조사가 실시되었는데, 처음 3회의 조사는 판세분석용 조사이고, 최종 조사는 선거결과 예측용 조사이다. 판세분석조사의 경우 조사시점에 발생된 이슈에 대한 반응이 타당성 있게 조사되었고, 선거예측조사의 경우 실제 선거결과에 매우 근접한 예측능력을 보였다.
최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.
Objective: Considering the physiological and clinical importance of leptin receptor (LEPR) in regulating obesity and the fact that porcine LEPR expression is not known to be controlled by lncRNAs and miRNAs, we aim to characterize this gene as a potential target of SSC-miR-323 and the lncRNA TCONS_00010987. Methods: Bioinformatics analyses revealed that lncRNA TCONS_00010987 and LEPR have SSC-miR-323-binding sites and that LEPR might be a target of lncRNA TCONS_00010987 based on cis prediction. Wild-type and mutant TCONS_00010987-target sequence fragments and wild-type and mutant LEPR 3'-UTR fragments were generated and cloned into pmiRRB-REPORTTM-Control vectors to construct respective recombinant plasmids. HEK293T cells were co-transfected with the SSC-miR-323 mimics or a negative control with constructs harboring the corresponding binding sites and relative luciferase activities were determined. Tissue expression patterns of lncRNA TCONS_00010987, SSC-miR-323, and LEPR in Anqing six-end-white (AQ, the obese breed) and Large White (LW, the lean breed) pigs were detected by real-time quantitative polymerase chain reaction; backfat expression of LEPR protein was detected by western blotting. Results: Target gene fragments were successfully cloned, and the four recombinant vectors were constructed. Compared to the negative control, SSC-miR-323 mimics significantly inhibited luciferase activity from the wild-type TCONS_00010987-target sequence and wild-type LEPR-3'-UTR (p<0.01 for both) but not from the mutant TCONS_00010987-target sequence and mutant LEPR-3'-UTR (p>0.05 for both). Backfat expression levels of TCONS_00010987 and LEPR in AQ pigs were significantly higher than those in LW pigs (p<0.01), whereas levels of SSC-miR-323 in AQ pigs were significantly lower than those in LW pigs (p<0.05). LEPR protein levels in the backfat tissues of AQ pigs were markedly higher than those in LW pigs (p<0.01). Conclusion: LEPR is a potential target of SSC-miR-323, and TCONS_00010987 might act as a sponge for SSC-miR-323 to regulate LEPR expression.
Background: Preoperative 5-fluorouracil (5-FU)-based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer (CRC). However, CRC cells often develop chemoradiation resistance (CRR). Recent studies have shown that long non-coding RNA (lncRNA) plays critical roles in a myriad of biological processes and human diseases, as well as chemotherapy resistance. Since the roles of lncRNAs in 5-FU-based CRR in human CRC cells remain unknown, they were investigated in this study. Materials and Methods: A 5-FU-based concurrent CRR cell model was established using human CRC cell line HCT116. Microarray expression profiling of lncRNAs and mRNAs was undertaken in parental HCT116 and 5-FU-based CRR cell lines. Results: In total, 2,662 differentially expressed lncRNAs and 2,398 mRNAs were identified in 5-FU-based CRR HCT116 cells when compared with those in parental HCT116. Moreover, 6 lncRNAs and 6 mRNAs found to be differentially expressed were validated by quantitative real time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated involvement of many, such as Jak-STAT, PI3K-Akt and NF-kappa B signaling pathways. To better understand the molecular basis of 5-FU-based CRR in CRC cells, correlated expression networks were constructed based on 8 intergenic lncRNAs and their nearby coding genes. Conclusions: Changes in lncRNA expression are involved in 5-FU-based CRR in CRC cells. These findings may provide novel insight for the prognosis and prediction of response to therapy in CRC patients.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.