• Title/Summary/Keyword: Real-Time Operating Systems

Search Result 470, Processing Time 0.035 seconds

Design and Implementation of eRTOS Real-time Operating Systems for Wearable Computers (웨어러블 컴퓨터를 위한 저전력 실시간 운영체제 eRTOS 설계 및 구현)

  • Cho, Moon-Haeng;Choi, Chan-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.42-54
    • /
    • 2008
  • In recent years, embedded systems have been expanding their application domains from traditional embedded systems such as military weapons, robots, satellites and digital convergence systems such as celluar phones, PMP(Portable Multimedia Player), PDAs(Personal Digital Assistants) to Next Generation Personal Computers(NGPCs) such as eating PCs, wearable computers. The NGPCs are network-based, human-centric digital information devices diverged from the traditional PCs used mainly for document writing, internet searching and database management. Wearable computers with battery capacity and memory size limitations have to use real-time operating systems with small footprints and low power management techniques to provide user's QoS in spite of hardware constraints. In this paper, we have designed and implemented a low-power RTOS (called eRTOS) for wearable computers. The implemented eRTOS has 18KB footprints and the dynamic power management and the device power management schemes are adapted in it. Experimental results with wearable computer applications show that the low power techniques could save energy up to 47 %.

Design and Implementation of a Protocol for Solving Priority Inversion Problems in Real-time OS (실시간 운영체제의 우선순위 역전현상 해결을 위한 프로토콜 설계 및 구현)

  • Kang, Seong-Goo;Gyeong, Gye-Hyeon;Ko, Kwang-Sun;Eom, Young-Ik
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.405-412
    • /
    • 2006
  • Real-time operating systems have been used in various computing environments, where a job must be completed in its deadline, with various conditions, such as effective scheduling policies, the minimum of an interrupt delay, and the solutions of priority inversion problems, that should be perfectly satisfied to design and develop optimal real-time operating systems. Up to now, in order to solve priority inversion problems among several those conditions. There have been two representative protocols: basic priority inheritance protocol and priority ceiling emulation protocol. However, these protocols cannot solve complicated priority inversion problems. In this paper, we design a protocol, called recursive priority inheritance (RPI), protocol that effectively solves the complicated priority inversion problems. Our proposed protocol is also implemented in the Linux kernel and is compared with other existing protocols in the aspect of qualitative analysis.

Real-Time Monitoring and Analysis of Power Systems with Synchronized Phasor Measurements

  • Kim, Hong-Rae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.101-108
    • /
    • 2007
  • State estimators are used to monitor the operating states of power systems in modern EMS. It iteratively calculates the voltage profile of the currently operating power system with voltage, current, and power measurements gathered from the entire system. All the measurements are usually assumed to be obtained simultaneously. It is practically impossible, however, to maintain the synchronism of the measurement data. Recently, phasor measurements synchronized via satellite are used for the operation of these power systems. This paper describes the modified state estimator used to support the processing of synchronized phasor measurements. Synchronized phasor measurements are found to provide synchronism of measurement data and improve the accuracy/redundancy of the measurement data for state estimation. The details of the developed state estimation program and some numerical results of operation are presented.

Linux-based ARINC 653 Health Monitor (리눅스 기반 ARINC 653 헬스 모니터)

  • Yoon, Young-Il;Joe, Hyunwoo;Kim, Hyungshin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.183-191
    • /
    • 2014
  • The software running on avionic system is required to be highly reliable and productive. The air transport industry has developed ARINC Specification 653(ARINC653) as a standardized software requirement of avionics computers. The document specifies the interface boundary between avionics application software and the core executive software. Dependability in ARINC 653 is provided by spatial and temporal partitioning whilst fault-tolerance is provided by health monitoring mechanism. Legacy real-time operating systems are used to support ARINC653 health monitor on integrated modular avionics(IMA). However, legacy real-time operating systems are costly and difficult to modify the kernel. In this paper, we suggest a Linux-based ARINC653 health monitor. Functionalities to support ARINC653 health monitor are implemented as a Linux kernel module and its performance is evaluated.

The Design and Implementation of Soft Timer Using Time Slot in Real-Time Operating Systems (실시간 운영체제에서 타임 슬롯을 이용한 소프트 타이머의 설계 및 구현)

  • 이재규;백대현;김봉재;정지영;이철훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.619-621
    • /
    • 2004
  • 실시간 운영 체제(Real-Time Operating Systems)는 시스템 동작이 논리적 정확성뿐만 아니라 시간적 정확성에도 좌우되는 운영 체제이다. 시간적 정확성은 결정성(Determinism)이라고도 하며 이를 지키기 위해서는 실시간 운영체제의 제약조건의 하나인 시스템 예측성을 만족해야만 한다. 예측성이란 시스템의 서비스가 정해진 시간 안에 완료되는지를 판별할 수 있다는 것으로 정확하게 동작하는 타이머가 꼭 필요하다. 본 논문에서는 타임 슬롯을 이용해서 타이머의 활성화, 비활성화 루틴을 간단하게 하고 타이머가 만료(Expire)되었음을 간단하게 판별해 낼 수 있는 소프트 타이머를 설계 및 구현하였다

  • PDF

On Benchmarking of Real-time Mechanisms in Various Periodic Tasks for Real-time Embedded Linux (실시간 임베디드 리눅스에서 다양한 주기적 타스크의 실시간 메커니즘 성능 분석)

  • Koh, Jae-Hwan;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.292-298
    • /
    • 2012
  • It is a real-time system that the system correctness depends not only on the correctness of the logical result of the computation but also on the result delivery time. Real-time Operating System (RTOS) is a software that manages the time of a microprocessor to ensure that the most important code runs first so that it is a good building block to design the real-time system. The real-time performance is achieved by using real-time mechanisms through data communication and synchronization of inter-task communication (ITC) between tasks. Therefore, test on the response time of real-time mechanisms is a good measure to predict the performance of real-time systems. This paper aims to analysis the response characteristics of real-time mechanisms in kernel space for real-time embedded Linux: RTAI and Xenomai. The performance evaluations of real-time mechanism depending on the changes of task periods are conducted. Test metrics are jitter of periodic tasks and response time of real-time mechanisms including semaphore, real-time FIFO, Mailbox and Message queue. The periodicity of tasks is relatively consistent for Xenomai but RTAI reveals smaller jitter as an average result. As for real-time mechanisms, semaphore and message transfer mechanism of Xenomai has a superior response to estimate deterministic real-time task execution. But real-time FIFO in RTAI shows faster response. The results are promising to estimate deterministic real-time task execution in implementing real-time systems using real-time embedded Linux.

A Study on the Control technique of the Real-Time over the Environment of Graphic User Interface Using VxD. (VxD를 이용한 GUI환경에서의 실시간 제어기법에 관한 연구)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.120-120
    • /
    • 2000
  • In this study, in order to control real system under the environment of graphic user interface, study on the technique which can control real system without additional hardware drivers using virtual machine driver operated on the windows operating system. Consider the problem which is the error and the delay of a sampling time on the multi task processing through the load test of the experiment using graphic user interface.

  • PDF

Study on Web Services Middleware for Real-Time Monitoring in the IoT Environment

  • Shin, Seung-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.97-104
    • /
    • 2015
  • Recently, the need for real-time systems which are providing various types of information that occur in large quantities in IoT environment is increasing. In this paper, we propose a middleware system which can monitor in real time on a web environment. The proposed system is designed to be integrated by using communication functions provided by a network operating system and external sensors. The proposed system is compared with an existing system and analysed by the server performance testing tool.

Real Time simulation programming in Object Oriented Distributed Computing Systems (객체지향 분산 컴퓨팅 시스템에서 실시간 시뮬레이션 프로그래밍)

  • Bae, Yong-Geun;Chin, Dal-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.159-168
    • /
    • 2002
  • Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the Real Time Simulation Programing(RTSP) structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The RTSP scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time triggered simulation for safety-critical applications. The RTSP structuring scheme is a syntactically simple but semantically Powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established OO programming languages such as C+ + and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems.

Multi-level Scheduler for Supporting Multimedia Task (멀티미디어 태스크 지원을 위한 다단계 스케줄러)

  • Ko Young-Woong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.375-384
    • /
    • 2005
  • General purpose operating systems are Increasingly being used for serving time-sensitive applications. These applications require soft real-time characteristics from the kernel and from other system-level services. In this paper, we explore various operating systems techniques needed to support time-sensitive applications and describe the design of MUSMA(Multi-level Scheduler for Multimedia Application). MUSMA is a framework that combination of user-level top scheduler and kernel-level bottom scheduler. We develope MUSMA in linux environment and it's performance is evaluated. Experiment result shows that it is possible to satisfy the constraints of multimedia in a general purpose operating system without significantly compromising the performance of non-realtime applications.