• Title/Summary/Keyword: Real-Time Object Detection

Search Result 512, Processing Time 0.025 seconds

Deep Learning-based Material Object Recognition Research for Steel Heat Treatment Parts (딥러닝 기반 객체 인식을 통한 철계 열처리 부품의 인지에 관한 연구)

  • Hye-Jung, Park;Chang-Ha, Hwang;Sang-Gwon, Kim;Kuk-Hyun, Yeo;Sang-Woo, Seo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.327-336
    • /
    • 2022
  • In this study, a model for automatically recognizing several steel parts through a camera before charging materials was developed under the assumption that the temperature distribution in the pre-air atmosphere was known. For model development, datasets were collected in random environments and factories. In this study, the YOLO-v5 model, which is a YOLO model with strengths in real-time detection in the field of object detection, was used, and the disadvantages of taking a lot of time to collect images and learning models was solved through the transfer learning methods. The performance evaluation results of the derived model showed excellent performance of 0.927 based on mAP 0.5. The derived model will be applied to the model development study, which uses the model to accurately recognize the material and then match it with the temperature distribution in the atmosphere to determine whether the material layout is suitable before charging materials.

Design and Implementation of Image Detection System Using Vertical Histogram-Based Shadow Removal Algorithm (수직 히스토그램 기반 그림자 제거 알고리즘을 이용한 영상 감지 시스템 설계 및 구현)

  • Jang, Young-Hwan;Lee, Jae-Chul;Park, Seok-Cheon;Lee, Bong-Gyou;Lee, Sang-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2020
  • For the shadow removal technology that is the base technology of the image detection system, real-time image processing has a problem that the processing speed is reduced due to the calculation complexity and it is also sensitive to illumination or light because shadows are removed only by the difference in brightness. Therefore, in this paper, we improved real-time performance by reducing the calculation complexity through the removal of the weighting part in order to solve the problem of the conventional system. In addition, we designed and evaluated an image detection system based on a shadow removal algorithm that could improve the shadow recognition rate using a vertical histogram. The evaluation results confirmed that the average speed increased by approximately 5.6ms and the detection rate improved by approximately 5.5%p compared to the conventional image detection system.

Real-time Smoke Detection Research with False Positive Reduction using Spatial and Temporal Features based on Faster R-CNN

  • Lee, Sang-Hoon;Lee, Yeung-Hak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1148-1155
    • /
    • 2020
  • Fire must be extinguished as quickly as possible because they cause a lot of economic loss and take away precious human lives. Especially, the detection of smoke, which tends to be found first in fire, is of great importance. Smoke detection based on image has many difficulties in algorithm research due to the irregular shape of smoke. In this study, we introduce a new real-time smoke detection algorithm that reduces the detection of false positives generated by irregular smoke shape based on faster r-cnn of factory-installed surveillance cameras. First, we compute the global frame similarity and mean squared error (MSE) to detect the movement of smoke from the input surveillance camera. Second, we use deep learning algorithm (Faster r-cnn) to extract deferred candidate regions. Third, the extracted candidate areas for acting are finally determined using space and temporal features as smoke area. In this study, we proposed a new algorithm using the space and temporal features of global and local frames, which are well-proposed object information, to reduce false positives based on deep learning techniques. The experimental results confirmed that the proposed algorithm has excellent performance by reducing false positives of about 99.0% while maintaining smoke detection performance.

Pedestrian Detection using RGB-D Information and Distance Transform (RGB-D 정보 및 거리변환을 이용한 보행자 검출)

  • Lee, Ho-Hun;Lee, Dae-Jong;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • According to the development of depth sensing devices and depth estimation technology, depth information becomes more important for object detection in computer vision. In terms of recognition rate, pedestrian detection methods have been improved more accurately. However, the methods makes slower detection time. So, many researches have overcome this problem by using GPU. Here, we propose a real-time pedestrian detection algorithm that does not rely on GPU. First, the depth-weighted distance map is used for detecting expected human regions. Next, human detection is performed on the regions. The performance for the proposed approach is evaluated and compared with the previous methods. We show that proposed method can detect human about 7 times faster than conventional ones.

Object Detection and Tracking using Bayesian Classifier in Surveillance (서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적)

  • Kang, Sung-Kwan;Choi, Kyong-Ho;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.297-302
    • /
    • 2012
  • In this paper, we present a object detection and tracking method based on image context analysis. It is robust from the image variations such as complicated background, dynamic movement of the object. Image context analysis is carried out using the hybrid network of k-means and RBF. The proposed object detection employs context-driven adaptive Bayesian framework to relive the effect due to uneven object images. The proposed method used feature vector generator using 2D Haar wavelet transform and the Bayesian discriminant method in order to enhance the speed of learning. The system took less time to learn, and learning in a wide variety of data showed consistent results. After we developed the proposed method was applied to real-world environment. As a result, in the case of the object to detect pass outside expected area or other changes in the uncertain reaction showed that stable. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Audio Marker Detection of the implementation for Effective Augmented Reality (효과적인 증강현실 구현을 위한 오디오 마커 검출)

  • Jeon, Soo-Jin;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.121-124
    • /
    • 2011
  • Augmented Reality integrates virtual objects onto a real world so that it extends the human's sensibility of real-world. an Augmented Reality technology combines real and virtual object in a real environment, and runs interactive in real time, and is regarded as an emerging technology in a large part of the future of information technology. So the benefits for the various businesses are estimated to be very high. In this paper, combine ARToolkit with OpenAL we can provide audio to users. These proposed methodologies will contribute to a better immersive realization of the conventional Augmented Reality system.

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF

Context Driven Real-Time Laser Pointer Detection and Tracking (상황 기반의 실시간 레이저 포인터 검출과 추적)

  • Kang, Sung-Kwan;Chung, Kyung-Yong;Park, Yang-Jae;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • There are two kinks of processes could detect the laser pointer. One is the process which detects the location of the pointer. the other one is a possibility of dividing with the process which converts the coordinate of the laser pointer which is input in coordinate of the monitor. The previous Mean-Shift algorithm is not appropriately for real-time video image to calculate many quantity. In this paper, we proposed the context driven real-time laser pointer detection and tracking. The proposed method is a possibility of getting the result which is fixed from the situation which the background and the background which are complicated dynamically move. In the actual environment, we can get to give constant results when the object come in, when going out at forecast boundary. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the proposed method. Accordingly, the accuracy and the quality of image recognition will be improved the surveillance system.

Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment (카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발)

  • Kim, Yujin;Lee, Hojun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.

A Histogram-based Object Tracking for Mobile Platform (모바일 플랫폼을 위한 히스토그램 기반 객체추적)

  • Ko, Jae-Pil;Ahn, Jung-Ho;Lee, Il-Young;Kim, Sung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.986-995
    • /
    • 2012
  • In this paper we propose a real-time moving object tracking method on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use the sliding-window detection technique based on histogram features. We solve the problem of the time-consuming histogram computation on each sub-window by adapting the integral histogram. For additional speed and tracking performance, we propose a new adaptive bin method. From the experiments on our dataset, we achieved high speed performance demonstrating 34~63 frames per second.