• Title/Summary/Keyword: Real-Time Correction

Search Result 470, Processing Time 0.03 seconds

An Analysis on the Real-Time Performance of the IGS RTS and Ultra-Rapid Products (IGS RTS와 Ultra Rapid 실시간 성능 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • For real-time precise positioning, IGS provides ephemeris predictions (IGS ultra-rapid, IGU) and real-time ephemeris estimates (real-time service, RTS). Due to the RTS data latency, which ranges from 5 s to 30 s, a short-term prediction process is necessary before applying the RTS corrections. In this paper, the real-time performance of the RTS correction and IGU prediction are compared. The RTS correction availability for the GPS satellites observed in Korea is computed as 99.3%. The RTS correction is applied to broadcast ephemeris to verify the accuracy of the RTS correction. The 3D orbit RMS error of the RTS correction is 0.043 m. Prediction of the RTS correction is modeled as a polynomial, and then the predicted value is compared with the IGU prediction value. The RTS orbit prediction accuracy is nearly equivalent to the IGU prediction, but RTS clock prediction performance is 0.13 m better than the IGU prediction.

The Effect of Postural Correction and Visual Feedback on Muscle Activity and Head Position Change During Overhead Arm Lift Test in Subjects with Forward Head Posture

  • Xu, Liwen;Hwang, Byoungha;Kim, Teaho
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.3
    • /
    • pp.151-156
    • /
    • 2019
  • Purpose: This study aimed to investigate the immediate effects of posture correction and real-time visual feedback using a video display on muscle activity and change of head position during overhead arm lift test in individuals with forward head posture. Methods: Fifteen subjects with forward head posture and fifteen normal subjects who volunteered were included in this study. During both groups performed the overhead arm lift test, the muscle activity of the upper trapezius, serratus anterior, sternocleidomastoid, and lower trapezius muscle were measured using electromyography, and head position change was measured using photographs. Then, forward head posture group was asked to perform overhead arm lift test again after posture correction and real-time visual feedback using a video display respectively. One-way analysis of variance (ANOVA) was used to analyze four conditions: pre-test, posture correction, real-time visual feedback, and the control group. Results: The upper trapezius and lower trapezius muscle activity significantly decreased posture correction, real-time visual feedback, and control group than pre-test of forward head posture group (p<0.05). The sternocleidomastoid muscle significantly decreased real-time visual feedback and control group than pre-test of forward head posture group. Head position change significantly decreased three conditions than pre-test of forward head posture group and real-time visual feedback and control group significantly decreased than posture correction. Conclusion: This study recommend for maintaining cervical stability during the overhead arm lift test, postural control using real-time visual feedback is more effective in subjects with forward head posture.

Real-time Geometric Correction System for Digital Image Projection onto Deformable Surface (변형 가능한 곡면에서의 디지털 영상 투영을 위한 실시간 기하 보정 시스템)

  • Lee, Young-Bo;Han, Sang-Hun;Kim, Jung-Hoon;Lee, Dong-Hoon;Yun, Tae-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.39-44
    • /
    • 2008
  • This paper proposes a real-time geometric correction system based on a projector to project digital images onto deformable surface. Markers use to trace lots of corresponding points would spoil the projected image when the projector projects a digital image onto the surface because they leave marks on the surface. In addition, it is difficult to build a real-time geometric correction system since bottlenecks occur through the process of the geometric correction for projecting images. In this paper, we use invisible infrared markers and a vertex shader of GPU using Cg TookKit of NVIDIA in order to eliminate disadvantage and bottlenecks in the process of markers recognition so that it is possible to project natural correction images in real-time. As a result, this system overlays an interactive virtual texture onto the real paper by using the geometric transformation. Therefore, it is possible to develop variation of AR(Augmented Reality) based on digital contents systems.

  • PDF

Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry (광위상 간섭을 이용한 이송축의 운동오차 실시간 보상)

  • 이형석;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.

Realtime Implementation Method for Perspective Distortion Correction (원근 왜곡 보정의 실시간 구현 방법)

  • Lee, Dong-Seok;Kim, Nam-Gyu;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.606-613
    • /
    • 2017
  • When the planar area is captured by the depth camera, the shape of the plane in the captured image has perspective projection distortion according to the position of the camera. We can correct the distorted image by the depth information in the plane in the captured area. Previous depth information based perspective distortion correction methods fail to satisfy the real-time property due to a large amount of computation. In this paper, we propose the method of applying the conversion table selectively by measuring the motion of the plane and performing the correction process by parallel processing for correcting perspective projection distortion. By appling the proposed method, the system for correcting perspective projection distortion correct the distorted image, whose resolution is 640x480, as 22.52ms per frame, so the proposed system satisfies the real-time property.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Real Time Error Correction of Hydrologic Model Using Kalman Filter

  • Wang, Qiong;An, Shanfu;Chen, Guoxin;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1592-1596
    • /
    • 2007
  • Accuracy of flood forecasting is an important non-structural measure on the flood control and mitigation. Hence, combination of horologic model with real time error correction became an important issue. It is one of the efficient ways to improve the forecasting precision. In this work, an approach based on Kalman Filter (KF) is proposed to continuously revise state estimates to promote the accuracy of flood forecasting results. The case study refers to the Wi River in Korea, with the flood forecasting results of Xinanjiang model. Compared to the results, the corrected results based on the Kalman filter are more accurate. It proved that this method can take good effect on hydrologic forecasting of Wi River, Korea, although there are also flood peak discharge and flood reach time biases. The average determined coefficient and the peak discharge are quite improved, with the determined coefficient exceeding 0.95 for every year.

  • PDF

A Design of the Real-Time Preprocessor for CMOS image sensor (CMOS 이미지 센서를 위한 실시간 전처리 프로세서의 설계)

  • 정윤호;이준환;김재석
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.224-227
    • /
    • 1999
  • This paper presents a design of the real-time preprocessor for CMOS image sensor suitable to the digital camera applications. CMOS image sensor offers some advantages in on-chip integration, system power reduction, and low cost. However, it has a lower-quality image than CCDs. We describe an image enhancement algorithm, which includes color interpolation, color correction, gamma correction, sharpening, and automatic exposure control, to compensate for this disadvantage, and present its efficient hardware architecture to implement on the real-time processor. The presented real-time preprocessor was designed using VHDL, and it contains about 19.2K logic gates. We also implement our system on FPGA chips in order to provide the real-time adjustment and it was successfully tested.

  • PDF

A study of error correction scheme using RTP for real-time transmission (Realtime 전송을 위해 RTP를 사용한 Error Correction Scheme 연구)

  • 박덕근;박원배
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.9-12
    • /
    • 2000
  • A forward error correction (FEC) is usually used to correct the errors of the real-time data occurred at the reciever side which require a real-time transmission. The data transmission is peformed after being encapsulating by RTP and UDP. In the ITU-T study group 16, four FEC schemes using the XORing are presented. In the paper, a new supplementary scheme is proposed. In the delay problem the new scheme performs better than the scheme 3 but in the recovery ability for successive packet loss is worse than scheme 3. The proposed scheme which supplements the present schemes can be adapted easily to the current network environment.

  • PDF

Implementation and Performance Analysis of DGPS & RTK Error Correction Data Real-Time Transmission System for Long-Distance in Mobile Environments

  • Cho, Ik-Sung;Ha, Chang-Seung;Yim, Jae-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.291-291
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(RealTime Kinematic) is in one of today's most widely used surveying techniques. But It's use is restricted by the distance between reference station and rover station and it is difficult to process data in realtime by it's own orgnizational limitation in precise measurement of positioning. To meet these new demands, In This paper, new DGPS and RTK correction data services through Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, we implemented performance a DGPS and RTK error correction data transmission system for long-distance using the internet and PSTN network which allows a mobile user to increase the distance at which the rover receiver is located from the reference in realtime. and we analyzed and compared DGPS and RTK performance by experiments through the Internet and PSTN network with the distance and the time.

  • PDF