• 제목/요약/키워드: Real-Time Calculation

검색결과 652건 처리시간 0.028초

A Study on the Calculation and Provision of Accruals-Quality by Big Data Real-Time Predictive Analysis Program

  • Shin, YeounOuk
    • International journal of advanced smart convergence
    • /
    • 제8권3호
    • /
    • pp.193-200
    • /
    • 2019
  • Accruals-Quality(AQ) is an important proxy for evaluating the quality of accounting information disclosures. High-quality accounting information will provide high predictability and precision in the disclosure of earnings and will increase the response to stock prices. And high Accruals-Quality, such as mitigating heterogeneity in accounting information interpretation, provides information usefulness in capital markets. The purpose of this study is to suggest how AQ, which represents the quality of accounting information disclosure, is transformed into digitized data in real-time in combination with IT information technology and provided to financial analyst's information environment in real-time. And AQ is a framework for predictive analysis through big data log analysis system. This real-time information from AQ will help financial analysts to increase their activity and reduce information asymmetry. In addition, AQ, which is provided in real time through IT information technology, can be used as an important basis for decision-making by users of capital market information, and is expected to contribute in providing companies with incentives to voluntarily improve the quality of accounting information disclosure.

채광·조명설비시스템의 광학 분석을 위한 이미지 프로세싱 기법에 관한 연구 (Methodological study on the High Dynamic Range Imaging Processing)

  • 임홍수;김곤
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.3-8
    • /
    • 2010
  • Recently, various daylight evaluation methods for visual environment have been developed; simulation analysis methods, numerical calculation, and data monitoring methods. However, it is impossible for simulation analysis to make real scenes and visualize real images exactly. Also, a numerical calculation is considered as an out of date and time-consuming mean. Therefore, for acquisition of accurate results, many studies often use the monitoring data methods. Especially, most studies regarding discomfort glare are evaluated by measuring the physical quantity of luminance through traditional measuring Minolta Luminance meters as an instrument. But, this method has a difficulty in measuring several points at the same time because of the limitation of spaces and time when mapping. So, this study focused on the potential usefulness of High Dynamic Range photography technique as a luminance mapping tool. In order to evaluate the accuracy of proposed programs such as webHDR, Photomatix and PHOTOLUX, this paper has conducted an experiment by using Canon EOS 5D and NICON Coolpix8400 digital camera.

A Speaker Pruning Method for Real-Time Speaker Identification System

  • 김민정;석수영;정종혁
    • 대한임베디드공학회논문지
    • /
    • 제10권2호
    • /
    • pp.65-71
    • /
    • 2015
  • It has been known that GMM (Gaussian Mixture Model) based speaker identification systems using ML (Maximum Likelihood) and WMR (Weighting Model Rank) demonstrate very high performances. However, such systems are not so effective under practical environments, in terms of real time processing, because of their high calculation costs. In this paper, we propose a new speaker-pruning algorithm that effectively reduces the calculation cost. In this algorithm, we select 20% of speaker models having higher likelihood with a part of input speech and apply MWMR (Modified Weighted Model Rank) to these selected speaker models to find out identified speaker. To verify the effectiveness of the proposed algorithm, we performed speaker identification experiments using TIMIT database. The proposed method shows more than 60% improvement of reduced processing time than the conventional GMM based system with no pruning, while maintaining the recognition accuracy.

Fast Generation Methods for Computer-Generated Hologram Using a Modified Recursive Addition Algorithm

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.282-287
    • /
    • 2013
  • A real-time digital holographic display is the core technology for the next-generation 3DTV. Holographic display requires a considerably large amount of calculation. If generating a large number of digital holograms is intended, the amount of calculation and the time required increase exponentially. This is a significant obstacle in a real-time hologram service. This paper proposes an algorithm that increases the speed of generating a Fresnel hologram by using a recursive addition operation covering the entire coordinate array of a digital hologram. The 3D object designed to calculate the digital hologram uses a depth-map image produced by computer graphics. The proposed algorithm is a technique that performs the computer-generated holography (CGH) operation with only recursive addition of all of the hologram's coordinates by analyzing the regularity between the 3D object and the digital hologram coordinates. The experimental results show that the proposed algorithm increases the operation speed by 70% over the technique using the conventional CGH equation and by more than 30% over the previously proposed recursive technique.

GMAW 공정에서 아크 안정성의 실시간 측정 (Real-time estimation of arc stability in GMAW process)

  • 원윤재;부광석;조형석
    • Journal of Welding and Joining
    • /
    • 제8권1호
    • /
    • pp.31-42
    • /
    • 1990
  • Arc must be stable during welding first of all other factors for obtaining sound weldment, especially in the automation of welding process. Arc stability is somewhat sophisticated phenomenon which is not clearly defined yet. In consumable electrode welding, the voltage and current variation due to metal transfer enables to assess arc stability. Recently, statistical analyses of the voltage and current waveform factors are performed to assess the degress of arc stability which is assessed and controlled by operator's own experience by now. But, considering the increasing need and the trend of automation of welding process, it is necessary to monitor arc stability in real-time. In this sutdy, the modified stability index composed of two voltage and current wvaeform factors (arc time and short circuit time) reduced from four factors (arc time, short circuit time, average arc current and average short circuit current) in Mita's index by the welding electrical circuit modeling is proposed and verified by experiments to be well estimating arc stability in the static sense. Also, the recursive calculation form estimating present arc stability in the dynamic sense is developed for real-time estimation. The results of applying the recursive index during welding show good estimation of arc stability in real-time. Therefore, the results of this study offers the mean for real-time control arc stability.

  • PDF

Rapid Calculation of CGH Using the Multiplication of Down-scaled CGH with Shifted Concave Lens Array Function

  • Lee, Chang-Joo;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.51-59
    • /
    • 2022
  • Holographic display technology is one of the promising 3D display technologies. However, the large amount of computation time required to generate computer-generated holograms (CGH) is a major obstacle to the commercialization of digital hologram. In various systems such as multi-depth head-up-displays with hologram contents, it is important to transmit hologram data in real time. In this paper, we propose a rapid CGH computation method by applying an arraying of a down-scaled hologram with the multiplication of a shifted concave lens function array. Compared to conventional angular spectrum method (ASM) calculation, we achieved about 39 times faster calculation speed for 3840 × 2160 pixel CGH calculation. Through the numerical investigation and experiments, we verified the degradation of reconstructed hologram image quality made by the proposed method is not so much compared to conventional ASM.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화 (Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator)

  • 여동진;차무현;문두환
    • 한국CDE학회논문집
    • /
    • 제16권3호
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.

Error Compensation of Laser Interferometer for Measuring Displacement Using the Kalman Filter

  • Park, Tong-Jin;Lee, Yong-Woo;Wang, Young-Yong;Han, Chang-Soo;Lee, Nak-Ku;Lee, Hyung-Wok;Choi, Tae-Hoon;Na, Kyung-Whan
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.41-46
    • /
    • 2004
  • This paper proposes a robust discrete time Kalman filter (RDKF) for the dynamic compensation of nonlinearity in a homodyne laser interferometer for high-precision displacement measurement and in real-time. The interferometer system is modeled to reduce the calculation of the estimator. A regulator is applied to improve the robustness of the system. An estimator based on dynamic modeling and a zero regulator of the system was designed by the authors of this study. For real measurement, the experimental results show that the proposed interferometer system can be applied to high precision displacement measurement in real-time.

  • PDF

UML 모델링 도구를 이용한 ATO 차상 소프트웨어의 설계 및 구현 (Design and Implementation of ATO On-board Software Using UML Modeling Tool)

  • 윤영환;방융;엄정규;조용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.384-389
    • /
    • 2008
  • In this paper, we propose a UML modeling of ATO on-board software. An automatic train operation (ATO) system is a real-time control system, which operates a train without a manual operation by a driver. For the safe and comfortable service, real-time embedded software for ATO on-board equipment should have both of high performance and reliability. UML-based object-oriented modeling technique is introduced and used widely to design software that satisfies this requirement. We used Rhapsody, which is a modeling tool for real-time embedded software, to model the construction and the behavior of ATO on-board equipment. As a result, ATO on-board software which performs the profile calculation and the real-time speed control is designed and implemented. The brief modeling result including behavioral characteristics and the simulation results are presented.

  • PDF